Recalibration of four empirical reference crop evapotranspiration models using a hybrid Differential Evolution-Grey Wolf Optimizer algorithm
Abstract
Keywords: reference crop evapotranspiration, empirical model, nine agricultural regions of China, hybrid algorithm, Brutsaert-Stricker
DOI: 10.25165/j.ijabe.20251801.9380
Keywords
Full Text:
PDFReferences
Wang J Z, Raza A, Hu Y G, Ali Buttar N, Shoaib M, Saber K, et al. Development of monthly reference evapotranspiration machine learning models and mapping of pakistan - A comparative study. Water, 2022; 14(10): 1666.
Mueller N D, Gerber J S, Johnston M, Ray D K, Ramankutty N, Foley J A. Closing yield gaps through nutrient and water management. Nature, 2012; 490: 254–257.
Raziei T, Pereira L S. Estimation of ETo with Hargreaves–Samani and FAO-PM temperature methods for a wide range of climates in Iran. Agricultural Water Management, 2013; 121: 1–18.
Hargreaves G H, Samani Z A. Reference crop evapotranspiration from temperature. Applied Engineering in Agriculture, 1985; 1(2): 96–99.
Heydari M M, Tajamoli A, Ghoreishi S H, Darbe-Esfahani M K, Gilasi H. Evaluation and calibration of Blaney-Criddle equation for estimating reference evapotranspiration in semiarid and arid regions. Environmental Earth Sciences, 2015; 74(5): 4053–4063.
Priestley C H B, Taylor R J. On the assessment of surface heat flux and evaporation using large scale parameters. Monthly Weather Review, 1972; 100(2): 81–92.
Charytanowicz M, Kulczycki P, Kowalski P A, Łukasik S, Czabak-Garbacz R. An evaluation of utilizing geometric features for wheat grain classification using X-ray images. Computers and Electronics in Agriculture, 2018; 144: 260–268.
Yong S L S, Ng J L, Huang Y F, Ang C K, Kamal N A, Mirzaei M, et al. Enhanced daily reference evapotranspiration estimation using optimized hybrid support vector regression models. Water Resources Management, 2024; 38(11): 4213–4241.
Allen R G, Pruitt W O, Wright J L, Howell T A, Ventura F, Snyder R, et al. A recommendation on standardized surface resistance for hourly calculation of reference ETo by the FAO56 Penman-Monteith method. Agricultural Water Management, 2006; 81(1-2): 1–22.
Zhao L, Zhao X B, Pan X L, Shi Y, Qiu Z M, Li X Z, et al. Prediction of daily reference crop evapotranspiration in different Chinese climate zones: Combined application of key meteorological factors and Elman algorithm. Journal of Hydrology, 2022; 610: 127822.
Allen R G. FAO56 Irrigation and Drainage Paper. Crop Evapotranpiration. Irrigation and Drainage, 1998; 300(56): 300.
Djaman K, Irmak S, ASCE M, Kabenge I, Futakuchi K. Evaluation of FAO-56 Penman-Monteith Model with limited data and the Valiantzas Models for estimating grass-reference evapotranspiration in sahelian conditions. Journal of Irrigation and Drainage Engineering, 2016; 142(11): 04016044.
Rawat K S, Singh S K, Bala A, Szabó S. Estimation of crop evapotranspiration through spatial distributed crop coefficient in a semi-arid environment. Agricultural Water Management, 2019; 213: 922–933.
Petković B, Petković D, Kuzman B, Milovančević M, Wakil K, Ho L S, et al. Neuro-fuzzy estimation of reference crop evapotranspiration by neuro fuzzy logic based on weather conditions. Computers and Electronics in Agriculture, 2020; 173: 105358.
Cammalleri C, Ciraolo G. A simple method to directly retrieve reference evapotranspiration from geostationary satellite images. International Journal of Applied Earth Observations and Geoinformation, 2013; 21: 149–158.
Gunston H, Batchelor C H. A comparison of the Priestley-Taylor and Penman methods for estimating reference crop evapotranspiration in tropical countries. Agricultural Water Management, 1983; 6(1): 65–77.
Bormann H. Sensitivity analysis of 18 different potential evapotranspiration models to observed climatic change at German climate stations. Climatic Change, 2011; 104(3): 729–753.
Gharbia S S, Smullen T, Gill L, Johnston P, Pilla F. Spatially distributed potential evapotranspiration modeling and climate projections. Science of The Total Environment, 2018; 633: 571–592.
Li S, Kang S Z, Zhang L, Zhang J H, Du T S, Tong L, et al. Evaluation of six potential evapotranspiration models for estimating crop potential and actual evapotranspiration in arid regions. Journal of Hydrology, 2016; 543: 450–461.
Yang Y, Chen R S, Han C T, Liu Z W. Evaluation of 18 models for calculating potential evapotranspiration in different climatic zones of China. Agricultural Water Management, 2021; 244: 106545.
Tabari H, Grismer M E, Trajkovic S. Comparative analysis of 31 reference evapotranspiration methods under humid conditions. Irrigation Science, 2013; 31(2): 107–117.
Zhao C Y, Nan Z R, Feng Z D. GIS-assisted spatially distributed modeling of the potential evapotranspiration in semi-arid climate of the Chinese Loess Plateau. Journal of Arid Environments, 2004; 58(3): 387–403.
Majidi M, Alizadeh A, Farid A, Vazifedoust M. Estimating evaporation from lakes and reservoirs under limited data condition in a Semi-Arid Region. Water Resources Management, 2015; 29(10): 3711–3733.
Feng Y, Cui N B, Zhao L, Hu X T, Gong D Z. Comparison of ELM, GANN, WNN and empirical models for estimating reference evapotranspiration in humid region of Southwest China. Journal of Hydrology, 2016; 536: 376–383.
Fang R M, Song S J. Daily reference evapotranspiration prediction of Tieguanyin tea plants based on mathematical morphology clustering and improved generalized regression neural network. Agricultural Water Management, 2020; 236: 106177.
Mohammadi B, Mehdizadeh S. Modeling daily reference evapotranspiration via a novel approach based on support vector regression coupled with whale optimization algorithm. Agricultural Water Management, 2020; 237: 106145.
Wu Z J, Chen X, Cui N B, Zhu B, Gong D Z, Han L, et al. Optimized empirical model based on whale optimization algorithm for simulate daily reference crop evapotranspiration in different climatic regions of China. Journal of Hydrology, 2022; 612: 128084.
Zhang Q W, Cui N B, Feng Y, Gong D Z, Hu X T. Improvement of Makkink model for reference evapotranspiration estimation using temperature data in Northwest China. Journal of Hydrology, 2018; 566: 264–273.
Tao H, Diop L, Bodian A, Djaman K, Ndiaye P M, Yaseen Z M. Reference evapotranspiration prediction using hybridized fuzzy model with firefly algorithm: Regional case study in Burkina Faso. Agricultural Water Management, 2018; 208: 140–151.
Yaseen Z M, Ebtehaj I, Bonakdari H, Deo R C, Danandeh Mehr A, Mohtar W H M W, et al. Novel approach for streamflow forecasting using a hybrid ANFIS-FFA model. Journal of Hydrology, 2017; 554: 263–276.
Chia M Y, Huang Y F, Koo C H. Support vector machine enhanced empirical reference evapotranspiration estimation with limited meteorological parameters. Computers and Electronics in Agriculture, 2020; 175(1): 105577.
Makkink G F. Testing the Penman formula by means of lysimeters. J inst of Water Eng, 1957.
Shiri J, Nazemi A H, Sadraddini A A, Marti P, Fakheri Fard A, Kisi O, et al. Alternative heuristics equations to the Priestley–Taylor approach: assessing reference evapotranspiration estimation. Theoretical and Applied Climatology, 2019; 138(1): 831–848.
Baier W, Robertson G W. Estimation of latent evaporation from simple weather observations. Canadian Journal of Plant Science, 1965; 45(3): 276–284.
Brutsaert W, Stricker H. An advection-aridity approach to estimate actual regional evapotranspiration. Water Resources Research, 1979; 15(2): 443–450.
Storn R, Price K. Differential evolution - A simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 1997; 11(4): 341–359.
Roy D K, Lal A, Sarker K K, Saha K K, Datta B. Optimization algorithms as training approaches for prediction of reference evapotranspiration using adaptive neuro fuzzy inference system. Agricultural Water Management, 2021; 255: 107003.
Wu L F, Huang G M, Fan J L, Ma X, Zhou H M, Zeng W Z. Hybrid extreme learning machine with meta-heuristic algorithms for monthly pan evaporation prediction. Computers and Electronics in Agriculture, 2020; 168: 105115.
Mirjalili S, Mirjalili S M, Lewis A. Grey Wolf Optimizer. Advances in Engineering Software, 2014; 69: 46–61.
Rodríguez L, Castillo O, Soria J, Melin P, Valdez F, Gonzalez C I, et al. A fuzzy hierarchical operator in the grey wolf optimizer algorithm. Applied Soft Computing, 2017; 57: 315–328.
Dong J H, Liu X G, Huang G M, Fan J L, Wu L F, Wu J. Comparison of four bio-inspired algorithms to optimize KNEA for predicting monthly reference evapotranspiration in different climate zones of China. Computers and Electronics in Agriculture, 2021; 186: 106211.
Copyright (c) 2025 International Journal of Agricultural and Biological Engineering

This work is licensed under a Creative Commons Attribution 4.0 International License.