Classification of wild mushrooms based on improved ShuffleNetV2
Abstract
Keywords: classification of wild mushrooms, ShuffleNetV2, deep learning, lightweight
DOI: 10.25165/j.ijabe.20251801.9179
Citation: Xu X M, Yang D W, Wei Q Q, Li J Y, Zhang J. Classification of wild mushrooms based on improved ShuffleNetV2.
Int J Agric & Biol Eng, 2025; 18(1): 208–218.
Keywords
Full Text:
PDFReferences
Li C T, Xu S. Edible mushroom industry in China: Current state and perspectives. Applied microbiology and biotechnology, 2022; 106(11): 3949–3955.
Wu F, Zhou L W, Yang Z L, Bau T, Li T H, Dai Y C. Resource diversity of Chinese macrofungi: edible, medicinal and poisonous species. Fungal diversity, 2019; 98: 1–76.
Zhang X R, Zhao H B, Zhang Y T, Wu K Y. Current situation, challenges, and future development directions of edible fungi industry in China. Horticulture & Seed, 2023; 43(5): 49–54, 97. (in Chinese)
Hamza A, Mylarapu A, Krishna K V, Kumar D S. An insight into the nutritional and medicinal value of edible mushrooms: A natural treasury for human health. Journal of Biotechnology, 2024; 381: 86–99.
Hou X L, Luo C Q, Chen S S, Zhang X W, Jiang J M, Yang Z F, et al. Progress in research on diseases of edible fungi and their detection methods: A review. Crop Protection, 2023; 174: 106420.
Mendoza-Bernal J, González-Vidal A, Skarmeta A F. A convolutional neural network approach for image-based anomaly detection in smart agriculture. Expert Systems with Applications, 2024; 247: 123210.
Qin C Y, Yang Y S, Gu F W, Chen P Y, Qin W C. Application and development of computer vision technology in modern agriculture. Journal of Chinese Agricultural Mechanization, 2023; 44(12): 119–128. (in Chinese)
Kaldarova M, Аkanova A, Nazyrova A, Mukanova A, Tynykulova A. Identification of weeds in fields based on computer vision technology. Eastern-European Journal of Enterprise Technologies, 2023; 124(2): 44–52.
Luan X D. Research on the application of artificial intelligence and computer technology in agricultural modernization. Advances in Computer, Signals and Systems, 2022; 6(2): 6–10.
Tian L, Wang C, Li H L, Sun H T. Recognition method of corn and rice crop growth state based on computer image processing technology. Journal of Food Quality, 2022; 2022(1): 2844757.
Morales A, Villalobos F J. Using machine learning for crop yield prediction in the past or the future. Frontiers in Plant Science, 2023; 14: 1128388.
Thakur P S, Khanna P, Sheorey T, Ojha A. Trends in vision-based machine learning techniques for plant disease identification: A systematic review. Expert Systems with Applications, 2022; 208: 118117.
Yin H, Yi W L, Hu D M. Computer vision and machine learning applied in the mushroom industry: A critical review. Computers and Electronics in Agriculture, 2022; 198: 107015.
Wang Z J, Zhang L L, Li S F, Zhang, Q Y, Fu Q Q, Liu S J. Research on classification and recognition of edible fungi based on machine learning algorithm. Journal of Fuyang Normal University (Natural Science), 2021; 38(4): 42–48. (in Chinese)
Lin N, Wang N, Li Z S, Chen X X, Zhang B, Tian X. Research on feature extraction and recognition of wild edible fungi based on machine vision. Journal of Chinese Agricultural Mechanization, 2020; 41(5): 111–119. (in Chinese)
Pradipkumar V H, Alagu Raja R A. Automatic identification of tree species from UAV images using machine learning approaches. Journal of the Indian Society of Remote Sensing, 2022; 50: 2447–2464.
Chen D G, Guli A, Yin P B, Lu Y N, Li S P. Identification of wild bacteria species based on improved Xception transfer learning. Laser & Optoelectronics Progress, 2021; 58(8): 245–254.
Espinosa-Herrera J M, Macedo-Cruz A, Fernández-Reynoso D S, Flores-Magdaleno H, Fernández-Ordoñez Y M, Soria-Ruíz J. Monitoring and identification of agricultural crops through multitemporal analysis of optical images and machine learning algorithms. Sensors, 2022; 22(16): 6106.
Ma X, Li Y L, Wan L P C, Xu Z X, Song J N, Huang J Q. Classification of seed corn ears based on custom lightweight convolutional neural network and improved training strategies. Engineering Applications of Artificial Intelligence, 2023; 120: 105936.
Xu P, Tan Q, Zhang Y P, Zha X T, Yang S M, Yang R B. Research on maize seed classification and recognition based on machine vision and deep learning. Agriculture, 2022; 12(2): 232.
Ketwongsa W, Boonlue S, Kokaew U. A new deep learning model for the classification of poisonous and edible mushrooms based on improved AlexNet convolutional neural network. Applied Sciences, 2022; 12(7): 3409.
Peng Y J, Xu Y, Shi J, Jiang S Y. Wild mushroom classification based on improved mobilevit deep learning. Applied Sciences, 2023; 13(8): 4680.
Xiao J W, Zhao C B, Li X J, Liu Z Y, Pang B, Yang Y H, et al. Research on mushroom image classification based on deep learning. Software Engineering, 2020; 23(7): 21–26. (in Chinese)
Wan G Q, Yao L. LMFRNet: A lightweight convolutional neural network model for image analysis. Electronics, 2023; 13(1): 129.
Zhu F W, Sun Y, Zhang Y Q, Zhang W J, Qi J. An improved MobileNetV3 mushroom quality classification model using images with complex backgrounds. Agronomy, 2023; 13(12): 2924.
Azadnia R, Noei-Khodabadi F, Moloudzadeh A, Jahanbakhshi A, Omid M. Medicinal and poisonous plants classification from visual characteristics of leaves using computer vision and deep neural networks. Ecological Informatics, 2024; 82: 102683.
Liu H, Hu Q R, Huang D Y. Research on the wild mushroom recognition method based on transformer and the multi-scale feature fusion compact bilinear neural network. Agriculture, 2024; 14(9): 1618.
Zhang F Y, Yin J L, Wu N, Hu X Y, Sun S K, Wang Y B. A dual-path model merging CNN and RNN with attention mechanism for crop classification. European Journal of Agronomy, 2024; 159: 127273.
Iqbal M J, Aasem M, Ahmad I, Alassafi M O, Bakhsh S T, Noreen N, et al. On application of lightweight models for rice variety classification and their potential in edge computing. Foods, 2023; 12(21): 3993.
Liang J, Jiang W P. A ResNet50-DPA model for tomato leaf disease identification. Frontiers in Plant Science, 2023; 14: 1258658.
Zhang X Y, Zhou X Y, Lin M X, Sun J. Shufflenet: An extremely efficient convolutional neural network for mobile devices. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, Utah, USA: IEEE, 2018; pp.6848–6856.
Sun W H, Li Y, Feng H L, Weng X, Ruan Y P, Fang K, et al. Lightweight and accurate aphid detection model based on an improved deep-learning network. Ecological Informatics, 2024; 83: 102794.
Jin X, Jiang J X, Li Y, Wang Z. Improved ShuffleNetV2 for action recognition in BPPV treatment. Biomedical Signal Processing and Control, 2024; 88: 105601.
Wang C Y, Liao H Y M, Wu Y H, Chen P Y, Hsieh J W, Yeh I H. CSPNet: A new backbone that can enhance learning capability of CNN. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, WA, USA: IEEE, 2020; pp.390–391.
Yu F, Koltun V. Multi-scale context aggregation by dilated convolutions. arXiv: 1511.07122, 2015; In Press. doi: 10.48550/arXiv.1511.07122.
Zhang X, Gao H Y, Wan L. Classification of fine-grained crop disease by dilated convolution and improved channel attention module. Agriculture, 2022; 12(10): 1727.
Wang P Q, Chen P F, Yuan Y, Liu D, Huang Z H, Hou X D, et al. Understanding convolution for semantic segmentation. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Tahoe, NV, USA: IEEE, 2018; pp.1451–1460. doi: 10.1109/WACV.2018.00163.
Wang Q L, Wu B G, Zhu P F, Li P H, Zuo W M, Hu Q H. ECA-Net: Efficient channel attention for deep convolutional neural networks. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA: IEEE, 2020; pp.11534–11542. doi: 10.1109/CVPR42600.2020.01155.
Yang L, Xu S, Yu X Y, Long H B, Zhang H H, Zhu Y W. A new model based on improved VGG16 for corn weed identification. Frontiers in Plant Science, 2023; 14: 1205151.
Woo S, Park J, Lee J Y, Kweon I S. CBAM: Convolutional block attention module. In: Computer Vision - ECCV 2018, 2018; pp.3–19. doi: 10.1007/978-3-030-01234-2_1.
Hu J, Shen L, Albanie S, Sun G, Wu E H. Squeeze-and-excitation networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020; 42(8): 2011–2023.
Tan M X, Le Q V. Efficientnet: Rethinking model scaling for convolutional neural networks. arXiv: 1905.11946, 2019; In press. doi: 10.48550/arXiv.1905.11946.
Huang G, Liu Z, Van Der Maaten L, Weinberger K Q. Densely connected convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA: IEEE, 2017; pp.2261–2269. doi: 10.1109/CVPR.2017.243.
Sandler M, Howard A, Zhu M, Zhmoginov A, Chen L C. Mobilenetv2: Inverted residuals and linear bottlenecks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA: IEEE, 2018; pp.4510–4520. doi: 10.1109/CVPR.2018.00474.
Jawadul K M, Faruq G M O, Md N, Mominul A, Julfikar H, Marcin K. Enhancing agriculture through real-time grape leaf disease classification via an edge device with a lightweight CNN architecture and Grad-CAM. Scientific Reports, 2024; 14: 16022.
Zhou H M, Chen J G, Niu X L, Dai Z G, Qin L, Ma L S, et al. Identification of leaf diseases in field crops based on improved ShuffleNetV2. Frontiers in Plant Science, 2024; 15: 1342123.
Li X C, Li X H, Zhang S M, Zhang G Y, Zhang M Q, Shang H Y. SLViT: Shuffle-convolution-based lightweight Vision transformer for effective diagnosis of sugarcane leaf diseases. Journal of King Saud University-Computer and Information Sciences, 2023; 35(6): 101401.
Ni H J, Shi Z W, Karungaru S, Lv S, Li X Y, Wang X X, et al. Classification of typical pests and diseases of rice based on the ECA attention mechanism. Agriculture, 2023; 13(5): 1066.
Li N, Xue J M, Wu S B, Qin K D, Liu N. Research on coal and gangue recognition model based on CAM-hardswish with efficientNetV2. Applied Sciences, 2023; 13(15): 8887.
Copyright (c) 2025 International Journal of Agricultural and Biological Engineering

This work is licensed under a Creative Commons Attribution 4.0 International License.