Effect of bioaugmentation on start-up phase of anaerobic digestionat high organic loading rate
Abstract
bioaugmentation strategy of 0.675 g VS/L of bioaugmentation seed added every 5 d during the first hydraulic retention time (HRT) performed the best and remained relatively stable for the next three HRTs without bioaugmentation. The 16S rRNA gene sequencing analysis revealed that Methanothrix predominated in bioaugmented reactors. A large proportion of Methanothrix accompanied by a small proportion of Methanospirillum played a key role in volatile fatty acid degradation and contributed to the successful start-up and long-term stability of AD at a high OLR. These findings suggest that bioaugmentation with methangenic consortium is a promising strategy to boost the AD process at high OLRs and achieve higher treatment capacity of food waste.
Keywords: high organic loading rate, anaerobic digestion, bioaugmentation, propionate degradation, Methanothrix
DOI: 10.25165/j.ijabe.20251801.9026
Citation: Cheng X Y, Zheng G X, Hu Z Y, Yan M, Zhen F, Li Y, et al. Effect of bioaugmentation on start-up phase of
anaerobic digestionat high organic loading rate. Int J Agric & Biol Eng, 2025; 18(1): 292–298.
Keywords
Full Text:
PDFReferences
Jin C X, Sun S Q, Yang D H, Sheng W J, Ma Y D, He W Z, et al. Anaerobic digestion: An alternative resource treatment option for food waste in China. Science of the Total Environment, 2021; 779: 146397.
Jiang J F, Li L H, Li Y, He Y, Wang C R, Sun Y M. Bioaugmentation to enhance anaerobic digestion of food waste: Dosage, frequency and economic analysis. Bioresource Technology, 2020; 307: 123256.
Zan F X, Iqbal A, Lu X J, Wu X H, Chen G H. “Food waste-wastewater-energy/resource” nexus: Integrating food waste management with wastewater treatment towards urban sustainability. Water Research, 2022; 211: 118089.
Lo I M C, Woon K S. Food waste collection and recycling for value-added products: potential applications and challenges in Hong Kong. Environmental Science and Pollution Research, 2016; 23(8): 7081–7091.
Tang J L, Wang X C C, Hu Y S, Pu Y H, Huang J, Ngo H H, et al. Nutrients removal performance and sludge properties using anaerobic fermentation slurry from food waste as an external carbon source for wastewater treatment. Bioresource Technology, 2019; 271: 125–135.
Chew K R, Leong H Y, Khoo K S, Vo D V N, Anjum H, Chang C K, et al. Effects of anaerobic digestion of food waste on biogas production and environmental impacts: A review. Environmental Chemistry Letters, 2021; 19(4): 2921–2939.
Zhang C S, Su H J, Baeyens J, Tan T W. Reviewing the anaerobic digestion of food waste for biogas production. Renewable and Sustainable Energy Reviews, 2014; 38: 383–392.
Xing B S, Cao S F, Han Y L, Wen J W, Zhang K D, Wang X C C. Stable and high-rate anaerobic co-digestion of food waste and cow manure: Optimisation of start-up conditions. Bioresource Technology, 2020; 307: 123195.
Li L, Peng X Y, Wang X M, Di Wu D. Anaerobic digestion of food waste: A review focusing on process stability. Bioresource Technology, 2018; 248: 20–28.
Goberna M, Gadermaier M, Franke-Whittle I H, Garcia C, Wett B, Insam H. Start-up strategies in manure-fed biogas reactors: Process parameters and methanogenic communities. Biomass and Bioenergy, 2015; 75: 46–56.
Voelklein M A, Shea R O, Jacob A, Murphy J D. Role of trace elements in single and two-stage digestion of food waste at high organic loading rates. Energy, 2017; 121: 185–192.
Lim E Y, Tian H L, Chen Y Y, Ni K W, Zhang J X, Tong Y W. Methanogenic pathway and microbial succession during start-up and stabilization of thermophilic food waste anaerobic digestion with biochar. Bioresource Technology, 2020; 314: 123751.
Tabatabaei M, Aghbashlo M, Valijanian E, Panahi H K S, Nizami A S, Ghanavati H, et al. A comprehensive review on recent biological innovations to improve biogas production, Part 2: Mainstream and downstream strategies. Renewable Energy, 2020; 146: 1392–1407.
Dalke R, Demro D, Khalid Y, Wu HR, Urgun-Demirtas M. Current status of anaerobic digestion of food waste in the United States. Renewable and Sustainable Energy Reviews, 2021; 151: 111554.
Yan M, Treu L, Campanaro S, Tian H L, Zhu X Y, Khoshnevisan B, et al. Effect of ammonia on anaerobic digestion of municipal solid waste: Inhibitory performance, bioaugmentation and microbiome functional reconstruction. Chemical Engineering Journal, 2020; 401: 126159.
Yang Z Y, Sun H Y, Zhao Q, Kubonova M, Zhang R H, Liu G Q, et al. Long-term evaluation of bioaugmentation to alleviate ammonia inhibition during anaerobic digestion: Process monitoring, microbial community response, and methanogenic pathway modeling. Chemical Engineering Journal, 2020; 399: 125765.
Tian H L, Yan M, Treu L, Angelidaki I, Fotidis I A. Hydrogenotrophic methanogens are the key for a successful bioaugmentation to alleviate ammonia inhibition in thermophilic anaerobic digesters. Bioresource Technology, 2019; 293: 122070.
Wang S Q, Li D N, Zhang K Q, Ma Y J, Liu F Y, Li Z W, et al. Effects of initial volatile fatty acid concentrations on process characteristics, microbial communities, and metabolic pathways on solid-state anaerobic digestion. Bioresource Technology, 2023; 369: 128461.
Li C R, Mörtelmaier C, Winter J, Gallert C. Effect of moisture of municipal biowaste on start-up and efficiency of mesophilic and thermophilic dry anaerobic digestion. Bioresource Technology, 2014; 168: 23–32.
Li Y, Sun Y M, Yang G X, Hu K Q, Lv P M, Li L H. Vertical distribution of microbial community and metabolic pathway in a methanogenic propionate degradation bioreactor. Bioresource Technology, 2017; 245: 1022–1029.
Li Y, Sun Y M, Li L H, Yuan Z H. Acclimation of acid-tolerant methanogenic propionate-utilizing culture and microbial community dissecting. Bioresource Technology, 2018; 250: 117–123.
Li Y, Li L H, Sun Y M, Yuan Z H. Bioaugmentation strategy for enhancing anaerobic digestion of high C/N ratio feedstock with methanogenic enrichment culture. Bioresource Technology, 2018; 261: 188–195.
Li Y, Yang G X, Li L H, Sun Y M. Bioaugmentation for overloaded anaerobic digestion recovery with acid-tolerant methanogenic enrichment. Waste Management, 2018; 79: 744–751.
Hu Z Y, Zhang X J, Wang Y, Li Y, Sun Y M. Effect of Bioaugmentation on Anaerobic Digestion of Food Waste at Different Food to Micro Ratios. Advances in New and Renewable Energy, 2021; 9(6): 489–495 (in Chinese)
Xu X R, Sun Y, Sun Y M, Li Y. Bioaugmentation improves batch psychrophilic anaerobic co-digestion of cattle manure and corn straw. Bioresource Technology, 2022; 343: 126118.
He L S, Li L H, Li Y, Wang C R, Sun Y M. Bioaugmentation with methanogenic culture to improve methane production from chicken manure in batch anaerobic digestion. Chemosphere, 2022; 303: 135127.
Rice E W. Standard methods for the examination of water and wastewater, 22nd. Washington, USA: American Public Health Association. 2012.
Jiang J F, Li L H, Cui M C, Zhang F G, Liu Y X, Liu Y H, et al. Anaerobic digestion of kitchen waste: The effects of source, concentration, and temperature. Biochemical Engineering Journal, 2018; 135: 91–97.
Li L H, Li Y, Sun Y M, Yuan Z H, Kang X H, Zhang Y, et al. Effect of bioaugmentation on the microbial community and mono-digestion performance of Pennisetum hybrid. Waste Management, 2018; 78: 741–749.
Wang Y Y, Zhang Y L, Wang J B, Meng L. Effects of volatile fatty acid concentrations on methane yield and methanogenic bacteria. Biomass and Bioenergy, 2009; 33(5): 848–853.
Zhang C, Yuan Q, Lu Y H. Inhibitory effects of ammonia on syntrophic propionate oxidation in anaerobic digester sludge. Water Research, 2018; 146: 275–287.
Ferrer I, Vazquez F, Font X. Long term operation of a thermophilic anaerobic reactor: Process stability and efficiency at decreasing sludge retention time. Bioresource Technology, 2010; 101(9): 2972–2980.
Tonanzi B, Gallipoli A, Gianico A, Montecchio D, Pagliaccia P, Di Carlo M, et al. Long-term anaerobic digestion of food waste at semi-pilot scale: Relationship between microbial community structure and process performances. Biomass and Bioenergy, 2018; 118: 55–64.
Cayetano R D A, Park J H, Kang S, Kim S H. Food waste treatment in an anaerobic dynamic membrane bioreactor (AnDMBR): Performance monitoring and microbial community analysis. Bioresource Technology, 2019; 280: 158–164.
Demichelis F, Pleissner D, Fiore S, Mariano S, Gutierrez I M N, Schneider R, et al. Investigation of food waste valorization through sequential lactic acid fermentative production and anaerobic digestion of fermentation residues. Bioresource Technology, 2017; 241: 508–516.
Pleissner D, Demichelis F, Mariano S, Fiore S, Gutierrez I M N, Schneider R, et al. Direct production of lactic acid based on simultaneous saccharification and fermentation of mixed restaurant food waste. Journal of Cleaner Production, 2017; 143: 615–623.
Mitsumori M, Shinkai T, Takenaka A, Enishi O, Higuchi K, Kobayashi Y, et al. Responses in digestion, rumen fermentation and microbial populations to inhibition of methane formation by a halogenated methane analogue. British Journal of Nutrition, 2012; 108(3): 482–491.
Ahmad A A, Yang C, Zhang J B, Kalwar Q, Liang Z Y, Li C, et al. Effects of dietary energy levels on rumen fermentation, microbial diversity, and feed efficiency of yaks (Bos grunniens). Front Microbiol, 2020; 11. doi: 10.3389/fmicb.2020.00625.
Du J, Yin Q D, Gu M Q, Wu G X. New insights into the effect of ethanol and volatile fatty acids proportions on methanogenic activities and pathways. Environmental Research, 2021; 194: 110644.
Pelletier E, Kreimeyer A, Bocs S, Rouy Z, Gyapay G, Chouari R, et al. “Candidatus Cloacamonas acidaminovorans”: Genome sequence reconstruction provides a first glimpse of a new bacterial division. Journal of Bacteriology, 2008; 190(7). doi: 10.1128/jb.01248-07.
Cheng J, Hua J J, Kang T, Meng B, Yue L C, Dong H Q, et al. Nanoscale zero-valent iron improved lactic acid degradation to produce methane through anaerobic digestion. Bioresource Technology, 2020; 317: 124013.
Li Y, Wang C R, Xu X R, Sun Y M, Xing T. Bioaugmentation with a propionate-degrading methanogenic culture to improve methane production from chicken manure. Bioresource Technology, 2022; 346: 126607.
Copyright (c) 2025 International Journal of Agricultural and Biological Engineering

This work is licensed under a Creative Commons Attribution 4.0 International License.