Comparison of the feedback linearization plus LQR controller and the PID controller for greenhouse indoor climate
Abstract
Keywords: greenhouse, climate control, feedback linearization plus LQR control, PID control, genetic algorithm
DOI: 10.25165/j.ijabe.20251801.8766
Keywords
Full Text:
PDFReferences
Moghaddam J J, Zarei G, Momeni D, Faridi H. Non-linear control model for use in greenhouse climate control systems. Research in Agricultural Engineering, 2022; 68: 9–17.
Gruber J K, Guzman J L, Rodriguez F, Bordons C, Berenguel M. Nonlinear model predictive control of greenhouse temperature using a volterra model. In: 2009 European Control Conference (ECC), Budapest, 2009; pp.23−26. doi: 10.23919/ECC.2009.7074585.
Bersani C, Ouammi A, Sacile R, Zero E. Model predictive control of smart greenhouses as the path towards near zero energy consumption. Energies, 2020; 13(14): 3647.
Zeng S W, Hu H G, Xu L H, Li G H. Nonlinear adaptive PID control for greenhouse environment based on RBF network. Sensors, 2012; 12(5): 5328–5348.
Hu H G, Xu L H, Goodman E D, Zeng S W. NSGA-II-based nonlinear PID controller tuning of greenhouse climate for reducing costs and improving performances. Neural Computing and Applications, 2014; 24: 927–936.
Gao Z R, He L, Yue X G. Design of PID controller for greenhouse temperature based on Kalman. In: Proceedings of the 3rd International Conference on Intelligent Information Processing, 2018; pp.1−4. doi: 10.1145/3232116.3232117.
Su Y P, Yu Q M, Zeng L. Parameter self-tuning PID control for greenhouse climate control problem. IEEE Access, 2020; 8: 186157–186171.
Essahafi M, Lafkih M A. Microclimate control of a greenhouse by adaptive generalized linear quadratic strategy. Indonesian Journal of Electrical Engineering and Computer Science, 2018; 11: 377–385.
Chen L J, Du S F, Liang M H, He Y F. Adaptive feedback linearization-based predictive control for greenhouse temperature. IFAC-PapersOnLine, 2018; 51(17): 784–789.
Garces F, Becerra V M, Kambhampati C, Warwick K. Strategies for feedback linearisation. Springer, 2003; pp.27−60. doi: 10.1007/978-1-4471-0065-2.
Kuo Y L, Pongpanyaporn P. Continuous-time nonlinear model predictive tracking control with input constraints using feedback linearization. Applied Sciences, 2022; 12(10): 5016.
Chen L J, Du S F, Xu D, He Y F, Liang M H. Sliding mode control based on disturbance observer for greenhouse climate systems. Mathematical Problems in Engineering, 2018; 2018(1): 2071585.
Lammari K, Bounaama F, Ouradj B, Draoui B. Constrained GA PI sliding mode control of indoor climate coupled MIMO greenhouse model. Journal of Thermal Engineering, 2020; 6(3): 313–326.
Escamilla-Garcia A, Soto-Zarazua G M, Toledano-Ayala M, Rivas-Araiza E, Gastelum-Barrios A. Applications of artificial neural networks in greenhouse technology and overview for smart agriculture development. Applied Sciences, 2020; 10(11): 3835.
Ali R B, Bouadila S, Mami A. Development of a fuzzy logic controller applied to an agricultural greenhouse experimentally validated. Applied Thermal Engineering, 2018; 141: 798–810.
Chhipa I, Somwanshi D. Fuzzy logic controller to control internal climate of a greenhouse. In: 2019 4th Int. Conference and Workshops on Recent Advances and Innovations in Engineering (ICRAIE), Kedah: IEEE, 2019; pp.27−29. doi: 10.1109/ICRAIE47735.2019.9037781.
Vanegas-Ayala S C, Baron-Velandia J, Leal-Lara D D. A systematic review of greenhouse humidity prediction and control models using fuzzy inference systems. Advances in Human-Computer Interaction, 2022; 2022(1): 8483003.
Wang L N, Wang B R. Greenhouse microclimate environment adaptive control based on a wireless sensor network. Int J Agric & Biol Eng, 2020; 13(3): 64–69.
Wu M, Xiao H, Lu C, Zhang M, Jin J, Xie X. Research on decoupling greenhouse temperature and humidity based on feedback linearization. Journal of Electrical Systems, 2024; 20(2): 394–399.
Wang Y G, Lu Y J, Xiao R M. Application of nonlinear adaptive control in temperature of Chinese solar greenhouses. Electronics, 2021; 10(13): 1582.
Yan H F, Acquah S J, Zhang J Y, Wang G Q, Zhang C, Darko R O. Overview of modelling techniques for greenhouse microclimate environment and evapotranspiration. Int J Agric & Biol Eng, 2021; 14(6): 1–8.
Dong Q X, Liu J C, Qu M. Simple model for predicting hourly air temperatures inside Chinese solar greenhouses. Int J Agric & Biol Eng, 2023; 16(5): 56–60.
Nazir T, Arslan M, Khan U S. Design of an automated greenhouse temperature controller; A renewable, robust and cost effective scheme. In: 2019 5th International Conference on Control, Automation, and Robotics (ICCAR), Beijing, 2019; pp.342−346. doi: 10.1109/ICCAR.2019.8813324.
Porter B, Design of linear multivariable continuous-time tracking, International Journal of Systems Science, 2013; 5(12), 1155−1164.
Levine W S. The control handbook: Control system fundamentals. Boca Raton: CRC Press, 2011; 786p.
Hu H G, Xu L H, Wei R H, Zhu B K. Multi-objective control optimization for greenhouse environment using evolutionary algorithms. Sensors, 2011; 11(6): 5792–5807.
Copyright (c) 2025 International Journal of Agricultural and Biological Engineering

This work is licensed under a Creative Commons Attribution 4.0 International License.