Effects of crop residues for animal consumption and soil enhancement on the electricity generation potential of residues: A case study of Sawla-Tuna-Kalba district, Ghana
Abstract
Key words: animal feed; crop residue; electricity generation; soil enhancement
DOI: 10.25165/j.ijabe.20241704.8693
Citation: Awaafo A, Awafo Edward A., Mahdavi M, Vera D, Akolgo G A, Amankwah E, et al. Effects of crop residues for animal consumption and soil enhancement on the electricity generation potential of residues: A case study of Sawla-Tuna-Kalba district, Ghana. Int J Agric & Biol Eng, 2024; 17(4): 276–287.
Keywords
Full Text:
PDFReferences
IPCC. Climate change 2022: Impacts, adaptation and vulnerability. 2022; Available: https://www.ipcc.ch/report/ar6/wg2/. Accessed on: [2023-05-01].
UN. The 17 SDG’S, united nations sustainable development goals. 2020; Available: https://sdgs.un.org/goals. Accessed on: [2023-04-18].
Abas N, Kalair A, Khan N. Review of fossil fuels and future energy technologies. Futures, 2015; 69: 31–49.
IEA. Key world energy statistics 2021. 2021; Available: https://www.iea.org/reports/key-world-energy-statistics-2021. Accessed on: [2023-05-01]
Azni M A, Khalid R M, Hasran U A, Kamarudin S K. Review of the effects of fossil fuels and the need for a hydrogen fuel cell policy in Malaysia. Sustain, 2023; 15(5): 4033.
Cronin J, Anandarajah G, Dessens O. Climate change impacts on the energy system : A review of trends and gaps. Climatic Change, 2018; 151: 79–93.
KFW, GIZ, and IRENA. The renewable energy transition in africa: powering access, resilience and prosperity. 2020; Available: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2021/March/Renewable_Energy_Transition_Africa_2021.pdf. Accessed on: [2023-04-18].
Shirzad M, Panahi H K S, Dashti B B, Rajaeifar M A, Aghbashlo M, Tabatabaei M. A comprehensive review on electricity generation and GHG emission reduction potentials through anaerobic digestion of agricultural and livestock/slaughterhouse wastes in Iran. Renew Sustain Energy Rev, 2019; 111: 571–594.
Aghbashlo M, Mandegari M, Tabatabaei M, Farzad S, Mojarab Soufiyan M, Görgens J F. Exergy analysis of a lignocellulosic-based biorefinery annexed to a sugarcane mill for simultaneous lactic acid and electricity production. Energy, 2018; 149: 623–638.
Mensah T N O, Oyewo A S, Breyer C. The role of biomass in sub-Saharan Africa’s fully renewable power sector – The case of Ghana. Renew Energy, 2021; 173: 297–317.
IRENA, DBFZ. Stecher K, Brosowski A, Thrän D. Biomass potential in Africa. 2013; Available: https://www.irena.org//media/Files/IRENA/Agency/Publication/2013/IRENA-DBFZ_Biomass-Potential-in-Africa.pdfca. Accessed on: [2023-04-18].
Lynd L R, Sow M, Chimphango A F, Cortez L A, Brito Cruz C H, Elmissiry M, et al. Bioenergy and African transformation. Biotechnology for Biofuels, 2015; 8: doi: 10.1186/s13068-014-0188-5.
Ambali A, Chirwa P W, Chamdimba O, van Zyl W H. A review of sustainable development of bioenergy in Africa: An outlook for the future bioenergy industry. Sci Res Essays, 2011; 6(8): 1697–1708.
Awaafo A, Awafo E A, Mahdavi M, Akolgo G, Jurado F, Vera D et al. Crops production and the contribution of agricultural biomass power generation to Africa’s clean energy transition: Analysis of trends from 1990 to 2021. Biomass and Bioenergy, 2024; 186: 107244.
Mohammed Y S, Mustafa M W, Bashir N, Ogundola M A, Umar U. Sustainable potential of bioenergy resources for distributed power generation development in Nigeria. Renew Sustain Energy Rev, 2014; 34: 361–370.
Khatiwada D, Seabra J, Silveira S, Walter A. Power generation from sugarcane biomass - A complementary option to hydroelectricity in Nepal and Brazil. Energy, 2012; 48(1): 241–254.
Beeharry R P. Extended sugarcane biomass utilisation for exportable electricity production in Mauritius. Biomass and Bioenergy, 1996; 11: (6): 441–449.
Energy Commission. 2021 energy outlook for Ghana: Demand and supply outlook. 2021; Available: http://www.energycom.gov.gh/planning/data-%0Acenter/energy-outlook-for-ghana?download=120:energy-outlook-for-ghana-2021. Accessed on: [2023-04-18].
Azasi D V, Offei F, Kemausuor F, Akpalu L. Biomass and bioenergy bioenergy from crop residues : A regional analysis for heat and electricity applications in Ghana. Biomass and Bioenergy, 2020; 140: 105640.
Odoi-Yorke F, Osei L K, Gyamfi E, Adaramola M S. Assessment of crop residues for off-grid rural electrification options in Ghana. Sci African, 2022; 18.
No. November 2015. Ministry of Power. National Renewable Energy Action Plans ( NREAPs ) (Ghana ). 2020.
MoEn, EC, UNDP, NPC. Ghana renewable energy master plan. 2019; Available: http://energycom.gov.gh/files/Renewable-Energy-Masterplan-February-2019.pdf. Accessed on: [2023-04-18].
ACT 832. Renewable Energy. Ghana: The Parliament of Ghana, 2011. Available: https://energycom.gov.gh/files/RENEWABLE%20ENERGY%20ACT%202011%20(ACT%20832).pdf. Accessed on: [2023-04-18].
ACT 1045. Renewable Energy (Amendment) Act, 2020. Available: https://ir.parliament.gh/bitstream/handle/123456789/2062/RENEWABLE%20ENERGY%20(AMENDMENT)%20ACT,%202020%20(ACT%201045).pdf. Accessed on: [2023-04-18].
Afrane S, Ampah J D, Jin C, Liu H F, Aboagye E M. Techno-economic feasibility of waste-to-energy technologies for investment in Ghana : A multicriteria assessment based on fuzzy TOPSIS approach. J Clean Prod, 2021; 318: 128515.
Kemausuor F, Adaramola M S, Morken J. A review of commercial biogas systems and lessons for Africa. Energies, 2018; 11(11): 2984.
Kemausuor F, Kamp A, Thomsen S T, Bensah E C, Stergård H. Assessment of biomass residue availability and bioenergy yields in Ghana. Resour Conserv Recycl, 2014; 86: 28–37.
Manandhar A, Mousavi-Avval S H, Tatum J, Shrestha E, Nazemi P, Shah A. Solid biofuels. In: Murthy G S, Gnansounou E, Khanal S K, Pandey A, (Ed.) Biomass, Biofuels, Biochem. Amsterdam: Elsevier. 2021; pp.343–370.
IRENA, Renewable Energy Statistics 2020. Renewable hydropower (including mixed plants). 2020; Available: https://www.irena.org/publications/2020/Jul/Renewable-energy-statistics-2020. Accessed on: [2023-04-18].
Ezealigo U S, Ezealigo B N, Kemausuor F, Achenie L E K, Onwualu A P. Biomass valorization to bioenergy: Assessment of biomass residues’ availability and bioenergy potential in Nigeria. Sustain, 2021; 13(24): 13806.
Mohammed Y S, Mokhtar A S, Bashir N, Saidur R. An overview of agricultural biomass for decentralized rural energy in Ghana. Renew Sustain Energy Rev, 2013; 20: 15–25.
Awafo E A, Akolgo G A, Awaafo A. Assessment of agricultural residue potential for electrification of off-grid communities in the Sawla-Tuna-Kalba District of Ghana. In Press. doi: 10.21203/rs.3.rs-2052578/v1.
Arranz-Piera P, Kemausuor F, Addo A, Velo E. Electricity generation prospects from clustered smallholder and irrigated rice farms in Ghana. Energy, 2017; 121: 246–255.
Osei I, Addo A, Kemausuor F. Crop residues utilisation for renewable energy generation in Ghana : Review of feedstocks assessment approach, conversion technologies and challenges. Ghana Journal of Technology, 2021; 5: 29–42.
Jekayinfa S O, Scholz V. Potential availability of energetically usable crop residues in Nigeria. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2009; 31(8): 687–697.
Pastori M, Udias A, Cattaneo L, Moner-Girona M, Niang A, Carmona-Moreno C. Bioenergy potential of crop residues in the Senegal river basin: A cropland–energy–water-environment nexus approach. Sustain, 2021; 13(19): 11065.
Marrison C I, Larson E D. A preliminary analysis of the biomass energy production potential in africa in 2025 considering projected land needs for food production. Biomass and Bioenergy, 1996; 10(5-6): 337–351.
Massuque J, Matavel C, Trugilho P F. Outlook for the biomass energy sector in Mozambique: Policies and their challenges. J Energy in Southern Africa, 2021; 32(4). doi: .
Ayamga E A, Kemausuor F, Addo A. Resource., conservation and recycling technical analysis of crop residue biomass energy in an agricultural region of Ghana. Resources, Conserv Recycl, 2015; 96: 51–60.
Seglah P A, Wang Y J, Wang H Y, Gao C Y, Bi Y Y. Sustainable biofuel production from animal manure and crop residues in Ghana. Energies, 2022; 15(16): 5800.
Vaish B, Srivastava V, Singh P K, Singh P, Singh R P, Wood H. Energy and nutrient recovery from agro-wastes : Rethinking their potential possibilities. Environ Eng Res, 2020; 25(5): 623–637.
Gojiya A, Deb D, Iyer K K R. Feasibility study of power generation from agricultural residue in comparison with soil incorporation of residue. Renew Energy, 2019; 134: 416–425.
Sarkar S, Skalicky M, Hossain A, Brestic M, Saha S, Garai S, et al. Management of crop residues for improving input use efficiency and agricultural sustainability. Sustainability, 2020; 12(23).
Kamusoko R, Jingura R M, Parawira W, Chikwambi Z. Strategies for valorization of crop residues into biofuels and other value-added products. Biofuels, Bioprod Biorefining, 2021; 15(6): 1950–1964.
Govaerts B, Sayre K D, Deckers J. Stable high yields with zero tillage and permanent bed planting? Field Crops Research, 2005; 94(1): 33–42.
Kassam A, Friedrich T, Shaxson F, Pretty J. The spread of conservation agriculture: Justification, sustainability and uptake. Int J Agric Sustain, 2009; 7(4): 292–320.
Gatzweiler F W, von Braun J. Technological and institutional innovations for marginalized smallholders in agricultural development. London: Springer. 2016; 435 p.
Pulina G, Avondo M, Molle G, Francesconi A H D, Atzor A S, Cannas A. Nutrient requirements of small ruminants: sheep, goats, cervids, and new world camelids. Washington DC: The National Academies Press. 2007; 362 p. Available: https://www.scielo.br/j/rbz/a/h8NRWC9YYj5jXvzcLcKZbBF/?format=pdf. Accessed on: [2023-04-18].
Buchholz T, Da Silva I. Potential of distributed wood-based biopower systems serving basic electricity needs in rural Uganda. Energy for Sustainable Development, 2010; 14(1): 56–61.
Kumar A, Ogita S, Yau Y Y. Biofuels: Greenhouse gas mitigation and global warming. Springer: Jaipur, India. 2018; 432 p.
Zoungrana L, Sidibé S D S, Herman B, Coulibaly Y, Jeanmart H. Design of a gasification reactor for manufacturing and operation in West Africa. Designs, 2021; 5(4).
Indrawan N, Kumar A, Moliere M, Sallam K A, Huhnke R L. Distributed power generation via gasification of biomass and municipal solid waste: A review. J Energy Inst, 2020; 93(6): 2293–2313.
Eliasu A, Derkyi N S A, Gyamfi S. Techno-economic analysis of municipal solid waste gasification for electricity generation. Int J Energy Econ Policy, 2022; 12(1): 342–348.
Diyoke C, Idogwu S, Ngwaka U C. An economic assessment of biomass gasification for rural electrification in Nigeria. Int J Renew Energy Technol Res, 2014; 3(1): 1–17.
Sobamowo G M, Ojolo S J. Techno-economic analysis of biomass energy utilization through gasification technology for sustainable energy production and economic development in Nigeria. J Energy, 2018.
Rampe M J, Santoso I R S, Rampe H L, Tiwow V A, Rorano T E A. Study of pore length and chemical composition of charcoal that results from the pyrolysis of coconut shell in Bolaang Mongondow, Sulawesi, Indonesia. Karbala Int J Mod Sci, 2022; 8(1).
Nsaful F, Görgens J F, Knoetze J H. Comparison of combustion and pyrolysis for energy generation in a sugarcane mill. Energy Conversion and Management, 2013; 74: 524–534.
Obileke K, Nwokolo N, Makaka G, Mukumba P, Onyeaka H. Anaerobic digestion: Technology for biogas production as a source of renewable energy—A review. Energy Environ, 2021; 32(2): 191–225.
Amponsem B, Bensah E C, Antwi E, Ahiekpor J C, Boahen B, Mensah I, et al. Electricity generation from biogas as resource recovery potential from solid waste composition in a mixed-income municipality. Clean Waste Syst, 2023; 4: 100067.
Andersson J. Techno-economic analysis of integrated biomass gasification for green chemical production. ” BSc dissertation. Luleå: Luleå University of Technology, 2013; 84 p.
Arun K, Venkata Ramanan M, Mohanasutan S. Comparative studies and analysis on gasification of coconut shells and corn cobs in a perforated fixed bed downdraft reactor by admitting air through equally spaced conduits. Biomass Convers Biorefinery, 2022; 12(4): 1257–1269.
Ahmad A A, Zawawi N A, Kasim F H, Inayat A, Khasri A. Assessing the gasification performance of biomass: A review on biomass gasification process conditions, optimization, and economic evaluation. Renew Sustain Energy Rev, 2016; 53: 1333–1347.
Vera D, de Mena B, Jurado F, Schories G. Study of a downdraft gasifier and gas engine fueled with olive oil industry wastes. App.Therm Eng, 2013; 51(1-2): 119–129.
Aguado R, Vera D, Jurado F, Beltrán G. An integrated gasification plant for electric power generation from wet biomass: toward a sustainable production in the olive oil industry. Biomass Conv Bioref, 2022 .
Aguado R, Escámez A, Jurado F, Vera D. Experimental assessment of a pilot-scale gasification plant fueled with olive pomace pellets for combined power, heat and biochar production. Fuel, 2023; 344.
Basu P. Biomass gasification, pyrolysis and torrefaction. USA: Academic Press. 2018; doi: 10.1016/C2016-0-04056-1.
Peres A P G, Lunelli B H, Filho R M. Application of biomass to hydrogen and syngas production. Chemical Engineering Transactions, 2011; 32: 589–594.
Broer K M, Brown R C. The role of char and tar in determining the gas-phase partitioning of nitrogen during biomass gasification. Appl. Energy, 2015; 158: 474–483.
Fiore M, Magi V, Viggiano A. Internal combustion engines powered by syngas: A review. Applied Energy, 2020; 276: 115415.
Martínez J D, Mahkamov K, Andrade R V, Silva Lora E E. Syngas production in downdraft biomass gasifiers and its application using internal combustion engines. Renewable Energy, 2012; 38(1): 1–9.
Baratieri M, Baggio P, Bosio B, Grigiante M, Longo G A. The use of biomass syngas in IC engines and CCGT plants: A comparative analysis. Applied Thermal Engineering, 2009; 29(16): 3309–3318.
Scheiterle L, Birner R. Assessment of Ghana’s comparative advantage in maize production and the role of fertilizers. Sustainability, 2018; 10(11).
GSS, “Population of regions and districity, ” Accra – Ghana, 2021; Available: https://statsghana.gov.gh/gssmain/fileUpload/pressrelease/2021%20PHC%20General%20Report%20Vol%203A_Population%20of%20Regions%20and%20Districts_181121.pdf. Accessed on: [2023-04-18].
Sawla-Tuna-Kalba. District profile. Available : http://sawlatunakalbadistrict.gov.gh/profile.html. Accessed on [2023-05-14].
Amonoo-Neizer O. Energy profile of districts in Ghana. 2019. Available: https://energycom.gov.gh/files/DISTRICT ENERGY PROFILE - Draft Final.pdf. Accessed on [2023-05-14].
Bonye S Z, Aasoglenang T A, Bebelleh Der F, Bobie C N, Dery G. Fulani herder-farmer conflicts in rural Ghana: Perspectives of communities in the Sawla-Tuna-Kalba District. Journal of Planning and Land Management, 2021; 2(1): 77–86.
Pol Arranz P. Prospects of distributed electricity generation and services based on small scale biomass systems in ghana. PhD dissertation, Catalonia: Uniiversitat Polite’cnica De Catalunya, 2018; 93p.
Uresk D W. Cattle weights on USDA forest service lands by state with cow and calf forage consumption. Rangelands, 2010; 32(4): 26–29.
USDA, Conservation Practice Standard Mulching. 2019; pp.2–4. Available: https://efotg.sc.egov.usda.gov/api/CPSFile/23082/484_NC_CPS_Mulching_2019. Accessed on [2023-05-14].
Mahdavi M, Jurado F, Schmitt K, Bayne S, Chamana M. Wheat agricultural residences for bioenergy generation in Morocco. In: 2023 IEEE IAS Global Conference on Renewable Energy and Hydrogen Technologies (GlobConHT), Mali, Maldives: IEEE, 2023; pp.1–6. doi: 10.1109/GlobConHT56829.2023.10087643.
M. Mahdavi, A. Awaafo, K. Schmitt, F. Jurado and D. Vera, "Potential of Morocco in Energy Generation from Agricultural Residues, " 2023 IEEE International Conference on Environment and Electrical Engineering and 2023 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe), Madrid, Spain, 2023, pp.1–6, doi: 10.1109/EEEIC/ICPSEurope57605.2023.10194876.
Chidikofan G, Benoist A, Sawadogo M, Volle G, Valette J, Coulibaly Y, et al. Assessment of environmental impacts of tar releases from a biomass gasifier power plant for decentralized electricity generation. Energy Procedia, 2017; 118: 158–163.
PIRSA. Calculating dry matter intakes for various classes of stock. 2019; Available: https://www.pir.sa.gov.au/__data/assets/pdf_file/0007/272869/Calculating_dry_matter_intakes.pdf. Accessed on [2023-05-14].
Kilama G, Lating P O, Byaruhanga J, Biira S. Quantification and characterization of cocoa pod husks for electricity generation in Uganda. Energy, Sustainability and Society, 2019; 9(1).
Seglah P A, Neglo K A W, Wang H Y, Cudjoe D, Kemausuor F, Gao C Y, et al. Electricity generation in Ghana: Evaluation of crop residues and the associated greenhouse gas mitigation potential. Journal of Cleaner Production, 2023; 395: 136340.
Arranz-Piera P, Kemausuor F, Darkwah L, Edjekumhene I, Cortés J, Velo E. Mini-grid electricity service based on local agricultural residues: Feasibility study in rural Ghana. Energy, 2018; 153: 443–454.
Bationo A, Buerkert A, Sedogo M P, Christianson B C, Mokwunye A U. A critical review of crop-residue use as soil amendment in the West African semi-arid tropics. 1995; Available: https://agris.fao.org/search/en/providers/123819/records/64735df72c1d629bc97d35b5. Accessed on [2023-05-14].
Powell J M, Fernández-Rivera S, Williams T O, Renard C. Livestock and sustainable nutrient cycling in mixed farming systems of sub-Saharan Africa, In: Proceedings of an International Conference, Addis Ababa, Ethiopia: International Livestock Centre for Africa (ILCA), 1993; pp.305–322. Available: https://www.fao.org/fileadmin/templates/agphome/images/iclsd/documents/wk1_c26_gerard.pdf. Accessed on [2023-05-14].
Wuni M. Assessment of the constraints in soybean production: A case of northern region, Ghana. Journal of Developments in Sustainable Agriculture, 2011; 6(2): 199–214.
Lamidi A A, Ologbose F I. Dry season feeds and feeding: a threat to sustainable ruminant animal production in Nigeria. Journal of Agriculture and Social Research (JASR), 2014; 14(1): 17–31.
Hertel T W, Burke M B, Lobell D B. The poverty implications of climate-induced crop yield changes by 2030. Global Environmental Change, 2010; 20(4): 577–585.
Das R. Poverty and hunger: causes and consequences. Sarup & Sons. 2006; Available: https://books.google.com.gh/books/about/Poverty_and_Hunger.html?id=Z6TcP7mj6cMC&redir_esc=y. Accessed on [2024-01-30]
Ankur Scientific biomass gasification system. Available: https://www.ankurscientific.com/. Accessed on [2024-01-30]
Spanner RE biomass gasification system. Available: https://www.caluweinc.com/products/spanner-re2/. Accessed on [2024-01-30]
Froeling biomass gasification system. Available: https://www.froeling.com/en-us/products/heat-and-electricity/chp/ /. Accessed on [2024-01-30]
All Power Labs biomass gasification system. Available: https://www.allpowerlabs.com/gasification-explained. Accessed on [2024-01-30]
Copyright (c) 2024 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.