Image recognition for crop diseases using a novel multi-attention module
Abstract
Keywords: image recognition, crop disease, multi-attention module, deep learning, small sample
DOI: 10.25165/j.ijabe.20251801.8136
Citation: Chen L, Yuan Y, He H Y. Image recognition for crop diseases using a novel multi-attention module. Int J Agric &
Biol Eng, 2025; 18(1): 238–244.
Keywords
Full Text:
PDFReferences
Ngugi L, Abelwahab M, Abo-Zahhad M. Recent advances in image processing techniques for automated leaf pest and disease recognition-A review. Information Processing in Agriculture, 2021; 8(1): 27–51.
Kasinathan T, Singaraju D, Uyyala S R. Insect classification and detection in field crops using modern machine learning techniques. Information Processing in Agriculture, 2021; 8(3): 446–457.
Chen J D, Chen J X, Zhang D F, Nanehkaran Y A, Sun Y D. A cognitive vision method for the detection of plant disease images. Machine Vision and Applications, 2021; 32(1): 31.
Wells III W M. Medical image analysis - past, present, and future. Medical Image Analysis, 2016; 33: 4–6.
Wan J, Wang D Y, Hoi S C H, Wu P C, Zhu J K, Zhang Y D, et al. Deep learning for content-based image retrieval: A comprehensive study. In: Proceedings of the 22nd ACM International Conference on Multimedia, 2014; pp.157–166. doi: 10.1145/2647868.2654948.
Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks. Science, 2006; 313(5786): 504–507.
Picon A, Alvarez-Gila A, Seitz M, Ortiz-Barredo A, Echazarra J, Johannes A. Deep convolutional neural networks for mobile capture device-based crop disease classification in the wild. Computers and Electronics in Agriculture, 2019; 161: 280–290.
Shi Z F, Li H, Cao Q J, Ren H Z, Fan B Y. An image mosaic method based on convolutional neural network semantic features extraction. Journal of Signal Processing Systems, 2020; 92(4): 435–444.
Mohanty S P, Hughes D P, Salathé M. Using deep learning for image-based plant disease detection. Frontiers in Plant Science, 2016; 7: 1419.
Arya S, Singh R. A comparative study of CNN and AlexNet for detection of disease in potato and mango leaf. In: Proceedings of 2019 International Conference on Issues and Challenges in Intelligent Computing Techniques (ICICT), Ghaziabad: IEEE, 2019; pp.1–6. doi: 10.1109/ICICT46931.2019.8977648.
Szegedy C, Liu W, Jia Y Q, Sermanet P, Reed S, Anguelov D, et al. Going deeper with convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, 2015; pp.1–9. doi: 10.1109/CVPR.2015.7298594.
Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, et al. Imagenet large scale visual recognition challenge. International Journal of Computer Vision, 2015; 115(3): 211–252.
Yuan Y, Chen L, Wu H R, Li L. Advanced agricultural disease image recognition technologies: A review. Information Processing in Agriculture, 2022; 9(1): 48–59.
Yuan Y, Chen L, Ren Y C, Wang S M, Li Y. Impact of dataset on the study for crop disease image recognition. Int J Agric & Biol Eng, 2022; 15(5): 181–186.
Yang L, Yu X Y, Zhang S P, Long H B, Zhang H H, Xu S, et al. GoogLeNet based on residual network and attention mechanism identification of rice leaf diseases. Computers and Electronics in Agriculture, 2023; 204: 107543.
Loey M, ElSawy A, Afify M. Deep learning in plant diseases detection for agricultural crops: A survey. International Journal of Service Science, Management, Engineering, and Technology, 2020; 11(2): 41–58.
Dai W, Yang Q, Xue G, Yu Y. Boosting for transfer learning. In: Proceedings of the 24th International Conference on Machine Learning, 2007; pp.193–200.
Pan S J, Yang Q. A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 2009; 22(10): 1345–1359.
Fang S S, Yuan Y, Chen L, Zhang J, Li M, Song S D. Crop disease image recognition based on transfer learning. In: Proceedings of International Conference on Image and Graphics, 2017; pp.545–554. doi: 10.1007/978-3-319-71607-7_48.
Jia S J, Jia P J, Hu S P, Liu H B. Automatic detection of tomato diseases and pests based on leaf images. In: Proceedings of 2017 Chinese Automation Congress (CAC), Jinan: IEEE, 2017; pp.2537–2564. doi: 10.1109/CAC.2017.8243388.
Jiang Z C, Dong Z X, Jiang W P, Yang Y Z. Recognition of rice leaf diseases and wheat leaf diseases based on multi-task deep transfer learning. Computers and Electronics in Agriculture, 2021; 186: 106184.
Liu Y M, Wang Z L, Wang R J, Chen J S, Gao H J. Flooding-based MobileNet to identify cucumber diseases from leaf images in natural scenes. Computers and Electronics in Agriculture, 2023; 213: 108166.
Zhao B, Wu X, Feng J S, Peng Q, Yan S C. Diversified visual attention networks for fine-grained object classification. IEEE Transactions on Multimedia, 2017; 19(6): 1245–1256.
Jaderberg M, Simonyan K, Zisserman A. Spatial transformer networks. In: Proceedings of the 28th International Conference on Neural Information Processing Systems, Cambridge, MA, USA: MIT Press, 2015; pp.2017–2025.
Wang F, Jiang M Q, Qian C, Yang S, Li C, Zhang H, et al. Residual attention network for image classification. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, 2017; pp.6450–6458. doi: 10.1109/CVPR.2017.683.
Xiao T J, Xu Y C, Yang K Y, Zhang J X, Peng Y X, Zhang Z. The application of two-level attention models in deep convolutional neural network for fine-grained image classification. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, 2015; pp.842–850. doi: 10.1109/CVPR.2015.7298685.
Feng S, Zhao D X, Guan Q, Li J P, Liu Z Y, Jin Z Y, et al. A deep convolutional neural network-based wavelength selection method for spectral characteristics of rice blast disease. Computers and Electronics in Agriculture, 2022; 199: 107199.
Zheng J Y, Li K Y, Wu W B, Ruan H J. RepDI: A light-weight CPU network for apple leaf disease identification. Computers and Electronics in Agriculture, 2023; 212: 108122.
Chen L, Yuan Y. Agricultural disease image dataset for disease identification based on machine learning. In: Proceedings of International Conference on Big Scientific Data Management, 2018; pp.263–274.
Zeiler M, Fergus R. Visualizing and understanding convolutional networks. In: Proceedings of the European Conference on Computer Vision, 2014; pp.818–833.
Komodakis N, Zagoruyko S. Paying more attention to attention: Improving the performance of convolutional neural networks via attention transfer. In: Proceedings of International Conference on Learning Representations, 2017; pp.1–13.
Zhou B L, Khosla A, Lapedriza A, Oliva A, Torralba A. Learning deep features for discriminative localization. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, 2016; pp.2921–2930. doi: 10.1109/CVPR.2016.319.
Woo S, Park J, Lee J-Y, Kweon I S. CBAM: Convolutional block attention module. In: Proceedings of the European Conference on Computer Vision, 2018; 11211: 3–19.
Hu J, Shen L, Albanie S, Sun G, Wu E H. Squeeze-and-excitation networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018; 42(8): 2011–2023.
Copyright (c) 2025 International Journal of Agricultural and Biological Engineering

This work is licensed under a Creative Commons Attribution 4.0 International License.