Digital twins in smart farming: An autoware-based simulator for autonomous agricultural vehicles
Abstract
Keywords: autoware, simulation platform, autonomous agricultural vehicle, digital twin; autonomous robots
DOI: 10.25165/j.ijabe.20231604.8039
Citation: Zhao X, Wang W L, Wen L, Chen Z B, Wu S X, Zhou K, et al. Digital twins in smart farming: An autoware-based simulator for autonomous agricultural vehicles. Int J Agric & Biol Eng, 2023; 16(4): 185-190.
Keywords
Full Text:
PDFReferences
Bochtis D D, Sørensen C G C, Busato P. Advances in agricultural machinery management: A review. Biosystems Engineering, 2014; 126: 69–81.
Moysiadis V, Tsolakis N, Katikaridis D, Sørensen C G, Pearson S, Bochtis D. Mobile robotics in agricultural operations: A narrative review on planning aspects. Applied Sciences, 2020; 10(10): 3453. doi: 10.3390/app10103453.
Oksanen T, Visala A. Coverage path planning algorithms for agricultural field machines. Journal of Field Robotics, 2009; 26(8): 651–668.
Bochtis D D, Vougioukas S G. Minimising the non-working distance travelled by machines operating in a headland field pattern. Biosystems Engineering, 2008; 101(1): 1–12.
Jensen K, Larsen M, Nielsen S H, Larsen L B, Olsen K S, Jørgensen R N. Towards an open software platform for field robots in precision agriculture. Robotics, 2014; 3(2): 207–234.
Zhang Y H, Wang J, Wang X N, Dolan J M. Road-segmentation-based curb detection method for self-driving via a 3D-LiDAR sensor. IEEE Trans Intell Transp Syst, 2018; 19(12): 3981–3991.
Yao L J, Hu D, Yang Z D, Li H B, Qian M B. Depth recovery for unstructured farmland road image using an improved SIFT algorithm. Int J Agric Biol Eng, 2019; 12(4): 141–147.
Yang L L, Li Y B, Chang M S, Xu Y Y, Hu B B, Wang X X, et al. Recognition of field roads based on improved U-Net plus plus Network. Int J Agric & Biol Eng, 2023; 16(2): 171–178.
Grieves M. Digital twin : Manufacturing excellence through virtual factory replication. Digital Twin White Papaper, 2014; 7p.
Kritzinger W, Karner M, Traar G, Henjes J, Sihn W. Digital Twin in manufacturing: A categorical literature review and classification. IFAC-PapersOnLine, 2018; 51(11): 1016–1022.
Caputo F, Greco A, Fera M, Macchiaroli R. Digital twins to enhance the integration of ergonomics in the workplace design. International Journal of Industrial Ergonomics, 2019; 71: 20–31.
Sivalingam K, Sepulveda M, Spring M, Davies P. A review and methodology development for remaining useful life prediction of offshore fixed and floating wind turbine power converter with digital twin technology perspective. In: 2018 2nd International Conference on Green Energy and Applications, 2018; pp.197–204.
Rong G D, Shin B H, Tabatabaee H, Lu Q, Lemke S, Možeiko M, et al. LGSVL simulator: A high fidelity simulator for autonomous driving. 2020; pp.1-6. doi: 10.1109/ITSC45102.2020.9294422.
Pylianidis C, Osinga S, Athanasiadis I N. Introducing digital twins to agriculture. Computers and Electronics in Agriculture, 2021; 184: 105942. doi: 10.1016/j.compag.2020.105942.
Zhao Y P, Lian L K, Bi C W, Xu Z J. Digital twin for rapid damage detection of a fixed net panel in the sea. Computers and Electronics in Agriculture, 2022; 200: 107247. doi: 10.1016/j.compag.2022.107247.
Tsolakis N, Bechtsis D, Bochtis D. Agros: A robot operating system based emulation tool for agricultural robotics. Agronomy, 2019; 9(7): 403. doi: 10.3390/agronomy9070403.
Dosovitskiy A, Ros G, Codevilla F, López A, Koltun V. CARLA: An open urban driving simulator. In: 1st Conference on Robot Learning (CoRL 2017), PMLR; 2017; 78: 1–16.
Ziegler S, Höpler R. Extending the IPG CarMaker by FMI compliant units. In: Proceedings of the 8th International Modelica Conference, Dresden: Technical Univeristy, Citeseer, 2011; pp.779–783. doi: 10.3384/ecp11063779.
Benekohal R F, Treiterer J. CARSIM: Car-following model for simulation of traffic in normal and stop-and-go conditions. Transportation Research Record Journal of the Transportation Research Board, 1988; 1194: 99–111.
Ryan R R. ADAMS—Multibody system analysis software. In: Multibody Systems Handbook, Springer, 1990; pp.361–402.
Yang Y, Li Y K, Wen X, Zhang G, Ma Q L, Cheng S K, et al. An optimal goal point determination algorithm for automatic navigation of agricultural machinery: Improving the tracking accuracy of the Pure Pursuit algorithm. Computers and Electronics in Agriculture, 2022; 194: 106760. doi: 10.1016/j.compag.2022.106760.
Foote T. tf: The transform library. In: 2013 IEEE Conference Technologies Practical Robot Applications (TePRA), Woburn: IEEE, 2013; pp.1–6. doi: 10.1109/TePRA.2013.6556373.
Hu H M, Kaizu Y, Zhang H D, Xu Y W, Imou K, Li M, et al. Recognition and localization of strawberries from 3D binocular cameras for a strawberry picking robot using coupled YOLO/Mask R-CNN. Int J Agric & Biol Eng, 2022; 15(6): 175–179.
Bao X L, Leng J S, Mao J C, Chen B Y. Cutting of sheep carcass using 3D point cloud with dual-robot system. Int J Agric Biol Eng, 2022; 15(5): 163–171.
Omasa K, Ono E, Ishigami Y, Shimizu Y, Araki Y. Plant functional remote sensing and smart farming applications. Int J Agric & Biol Eng, 2022; 15(4): 1–6.
Copyright (c) 2023 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.