Recognition of field roads based on improved U-Net++ Network
Abstract
Keywords: image segmentation, unmanned agricultural machinery, field roads, point cloud super-resolution, point cloud bird's eye view
DOI: 10.25165/j.ijabe.20231602.7941
Citation: Yang L L, Li Y B, Chang M S, Xu Y Y, Hu B B, Wang X X, et al. Recognition of field roads based on improved U-Net++ Network. Int J Agric & Biol Eng, 2023; 16(2): 171-178.
Keywords
Full Text:
PDFReferences
Cui X Z, Feng Q, Wang S Z, Zhang J H. Monocular depth estimation with self-supervised learning for vineyard unmanned agricultural vehicle. Sensors, 2022; 22(3): 721. doi: 10.3390/s22030721.
Zhu N Y, Liu X, Liu Z Q, Hu K, Wang Y K, Tan J L, et al. Deep learning for smart agriculture: Concepts, tools, applications, and opportunities. Int J Agric & Biol Eng, 2018; 11(4): 32-44.
He Y, Jiang H, Fang H, Wang Y, Liu Y F. Research progress of intelligent obstacle detection methods of vehicles and their application on agriculture. Transactions of the CSAE, 2018; 34(9): 21-32. (in Chinese)
Yao L J, Hu D, Yang Z D, Li H B, Qian M B. Depth recovery for unstructured farmland road image using an improved SIFT algorithm. Int J Agric & Biol Eng, 2019; 12(4): 141-147.
Pang S, Morris D, Radha H. CLOCs: Camera-LiDAR object candidates fusion for 3D object detection. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Las Vegas: IEEE, 2020; pp.10386-10393. doi: 10.1109/IROS45743.2020.9341791.
Cui Y P, Xu H, Wu J Q, Sun Y, Zhao J X. Automatic vehicle tracking with roadside LiDAR data for the connected-vehicles system. IEEE Intelligent Systems, 2019; 34(3): 44-51.
Lyu Y C, Bai L, Huang X M. Real-time road segmentation using lidar data processing on an FPGA. In: 2018 IEEE International Symposium on Circuits and Systems (ISCAS), IEEE, 2018; pp.1-5.
Kisner H, Thomas U. Segmentation of 3D point clouds using a new spectral clustering algorithm without a-priori knowledge. In: VISIGRAPP 2018, 2018; pp.315-322.
Zhang W. Lidar-based road and road-edge detection. In: 2010 IEEE Intelligent Vehicles Symposium. La Jolla: IEEE, 2010; pp.845-848. doi: 10.1109/IVS.2010.5548134.
Charles R Q, Su H, Mo K C, Guibas L J. Pointnet: Deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2017; pp.652-660.
Beltrán J, Guindel C, Moreno F M, Cruzado D, Garcia F, De La Escalera A. Birdnet: A 3D object detection framework from lidar information. In: 2018 21st International Conference on Intelligent Transportation Systems (ITSC), IEEE, 2018; pp.3517-3523.
Hua B S, Tran M K, Yeung S K. Pointwise convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2018; pp.984-993.
Zhang Y H, Wang J, Wang X N, Dolan J M. Road-segmentation-based curb detection method for self-driving via a 3D-LiDAR sensor. IEEE Transactions on Intelligent Transportation Systems, 2018; 19(12): 3981-3991.
Zhou Y, Tuzel O. Voxelnet: End-to-end learning for point cloud based 3D object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, IEEE, 2018; pp.4490-4499.
Chang Y C, Xue F, Sheng F, Liang W T, Ming A L. Fast road segmentation via uncertainty-aware symmetric network. In: 2022 International Conference on Robotics and Automation (ICRA), Philadelphia: IEEE, 2022; pp.1124-11130. doi: 1109/ICRA46639.2022.9812452.
Zhu Z, Liu J L. Graph-based ground segmentation of 3D LIDAR in rough area. In: 2014 IEEE International Conference on Technologies for Practical Robot Applications (TePRA), IEEE, 2014; pp.1–5. doi: 10.1109/TePRA.2014.6869157.
Cheng Z Y, Ren G Q, Zhang Y. Ground segmentation from 3D point cloud using features of scanning line segments. Opto-Electronic Engineering, 2019; 46(7): 180268. doi: 10.12086/OEE.2019.180268.
Triess L T, Peter D, Rist C B, Enzweiler M, Zollner J M. CNN-based synthesis of realistic high-resolution LiDAR data. In: 2019 IEEE Intelligent Vehicles Symposium (IV), Paris: IEEE, 2019; pp.1512-1519.
Shan T X, Wang J K, Chen F F, Szenher P, Englot B Simulation-based lidar super-resolution for ground vehicles. Robotics and Autonomous Systems, 2020 134: 103647. doi: 10.1016/J.ROBOT.2020.103647.
Zhou Z, Siddiquee M M R, Tajbakhsh N, Liang J M. Unet++: Redesigning skip connections to exploit multiscale features in image segmentation. IEEE Transactions on Medical Imaging, 2019; 39(6): 1856-1867.
Ding G G, Han J G, Ding X H, Guo Y C. ACNet: Strengthening the kernel skeletons for powerful CNN via asymmetric convolution blocks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, IEEE, 2019; pp.1911-1920.
Oktay O, Schlemper J, Folgoc L L, Lee M, Heinrich M, Misawa K, et al. Attention U-Net: Learning where to look for the pancreas. arXiv preprint, 2018; arXiv:1804.03999, 2018.
Yang J D, Zhu J T, Wang H L, Yang X. Dilated MultiResUNet: Dilated multiresidual blocks network based on U-Net for biomedical image segmentation. Biomedical Signal Processing and Control, 2021; 68: 102643. doi: 10.1016/j.bspc.2021.102643.
Bala S A, Kant S. Dense dilated inception network for medical image segmentation. International Journal of Advanced Computer Science and Applications (IJACSA), 2020; 11(11): 0111195. doi: 10.14569/IJACSA.2020.0111195.
Copyright (c) 2023 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.