Near-infrared-reflection spectroscopy as measuring method to determine the state of the process for automatic control of anaerobic digestion

Andrea Stockl, Daniel Loeffler, Hans Oechsner, Thomas Jungbluth, Klaus Fischer, Martin Kranert

Abstract


A recently developed control strategy for the anaerobic digestion process requires secure knowledge about the state of the process. The near infrared reflection spectroscopy (NIRS), provides the possibility to determine process parameters of the anaerobic digestion process online and directly at the digester. To investigate if the NIRS measurements can successfully be used for the characterization of the state of the process within the control strategy the control was operated on two experimental digesters. The NIR spectra were recorded during the experiments. The values of the process parameters (mainly concentrations of organic acids) obtained by NIRS differ from the values of the chemical analyses during the experiment. Nevertheless the state of the process is categorized equally on the basis of both measurement methods. It can consequently be stated that NIRS is expected to meet the requirements of the control strategy.

Keywords


ear-infrared-reflection spectroscopy (NIRS), state of the process, automatic process control, anaerobic digestion, biogas

Full Text:

PDF

References


Anonymous. Gesetz für den Vorrang Erneuerbarer Energien (Erneuerbare-Energien-Gesetz (EEG)) vom 25. Oktober 2008 (BGBl I S. 2074), das durch Artikel 2 Absatz 69 des Gesetzes vom 22. Dezember 2011 (BGBl I S. 3044) geändert worden ist.

Anonymous. Gesetz für den Vorrang Erneuerbarer Energien (Erneuerbare-Energien-Gesetz (EEG), konsolidierte (unverbindliche) Fassung des Gesetzestextes in der ab Januar 2012 geltenden Fassung), 2011 (Grundlage: des Deutschen Bundestages vom 30. Juni. BT-Drucksache 17/6071 und Beschluss des Deutschen Bundestages vom 30.Juni (BT.Drucksache 17/6363)).

Oechsner H, Lemmer A, Helffrich D. Use of verdure in agricultural biogas plants - a way to significant evaluation of turf growth. Einsatz von Grüngut in landwirtschaftlichen Biogasanlagen - Ein Weg zur sinnvollen Verwertung von Rasenaufwuchs. Rasen-Turf-Gazon, 2003a; 34(2): 46-48.

Oechsner H, Lemmer A, Neuberg C. Energy crops as fermenting substrate in biogas plants. Feldfrüchte als Gärsubstrat in Biogasanlagen. Landtechnik, 2003b; 58(3): 146-147, 221.

Agency of Renewable Resources (FNR). Biogas Basisdaten Deutschland (Basical data of biogas Germany). 2010, Gülzow, available at: http://www.bio-energie.de/biogas/ biogasanlagen-in-deutschland/.

Löffler D. Entwicklung einer Regelungsstrategie für den Anaerobprozess am Beispiel landwirtschaftlicher Biogasanlagen. Dissertation. ISBN: 978-3-8356-3352-0. In: Stuttgarter Berichte zur Abfallwirtschaft, 2012, Volume 105, Oldenbourg-Industrieverlag Munich. Dissertation, University of Stuttgart, Stuttgart.

Batstone D J, Keller J, Angelidaki I, Kalyuzhnyi S V, Pavlostathis S G, Rozzi A, et al. Anaerobic digestion model no.1 (ADM1), 2002, Scientific & technical report 13, IWA Publishing, London.

Charakterisierung von Schlämmen - Bestimmung des Glühverlustes der Trockenmasse, DIN EN 12879. Beuth Verlag GmbH, 2001a, (Deutsches Institut für Normung e.V. (DIN)).

Charakterisierung von Schlämmen - Bestimmung des

Trockenrückstandes und des Wassergehalts, DIN EN 12880. Beuth Verlag GmbH, 2001b, (Deutsches Institut für Normung e.V. (DIN)).

(DIN) German Institute for Standardization. DIN 1343-Reference conditions, normal conditions, normal volume; concepts and values. 1990, German Standard.

Stockl A. Near infrared spectroscopic online monitoring of process stability in biogas plants. Engineering in Life Sciences, 2012; 12 (3): 295-305.

Rieger C, Weiland P. Prozessstörungen frühzeitig erkennen. BIOGAS Journal, 2006; (4): 18-20.

Lemmer A. Biogaserzeugung. In: Graf F, Bajohr S (Eds), Biogas: Erzeugung, Aufbereitung, Einspeisung, Oldenbourg, Munich, 2011, pp. 75-118.

Konstantinov K B, Aarts R, Yoshida T. Expert systems in bioprocess control: Requisite features, in: Fiechter, A., (Ed), Bioprocess design and control, Advances in biochemical engineering, biotechnology, Springer, Berlin, Heidelberg, 1993, volume 48, 169-191 p.

Lunze J. Regelungstechnik 1: Systemtheoretische Grundlagen, Analyse und Entwurf einschleifiger Regelungen, Springer-Lehrbuch, sixth rev. ed., Springer, Berlin, Heidelberg, 2007.

Ogunnaike B A, Ray W H. Process dynamics, modeling, and control, Oxford University Press, New York, 1994.

Kessler W. Multivariate Datenanalyse für die Pharma-, Bio- und Prozessanalytik (Multivariate data analysis for pharma-, bio- and process analytics). Wiley-VCH,

Weinheim, 2007.

Gunn S. Support vector machines for classification and regression. Technical report, Image Speech and Intelligent Systems Research Group, University of Southampton, 1998.

Cristianini N, Shawe-Taylor J. An introduction to support vector machines and other kernel-based learning methods. Cambridge University Press, UK, 2000.

Williams P C, Sobering D C. Comparison of commercial near infrared transmittance and reflectance instruments for analysis of whole grains and seeds. Journal of Near Infrared Spectroscopy, 1993; 1: 25-32.

Schölkopf B, Smola A J. Learning with kernels. MIT press, Cambridge, 2002.

Üstün B, Melssen W J, Buydens L M C. Facilitating the application of Support Vector Regression by using a universal Pearson VII function based kernel. Chemometrics and Intelligent Laboratory Systems, 2006; 81(1): 29-40.

Üstün B, Melssen W J, Buydens L M C. Visualisation and interpretation of Support Vector Regression models. Analytica Chimica Acta, 2007; 595(1-2): 299-309.

Zhao C Y, Zhang H X, Zhang X Y, Liu M C, Hu Z D, Fan B T. Application of support vector machine (SVM) for prediction toxic activity of different data sets. Toxicology, 2006; 217(2-3): 105-119.

Witten F. Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann Pub, 2005. Available at: http://mestrado.deinfo.uepg.br/mestrado/docs/WittenFrank.pdf.




Copyright (c)



2023-2026 Copyright IJABE Editing and Publishing Office