Detection of the foreign object positions in agricultural soils using Mask-RCNN
Abstract
Keywords: foreign object, soil object, position, agricultural soil, Mask R-CNN, GPR image
DOI: 10.25165/j.ijabe.20231601.7173
Citation: Li Y H, Wang C F, Wang C Y, Deng X L, Zhao Z X, Chen S D, et al. Detection of the foreign object positions in agricultural soils using Mask-RCNN. Int J Agric & Biol Eng, 2023; 16(1): 220–231.
Keywords
Full Text:
PDFReferences
Li Y H, Zhao X X, Xu W C, Liu Z, Wang X. An effective FDTD model for GPR to detect the material of hard objects buried in tillage soil layer. Soil and Tillage Research, 2019; 195: 104353. doi: 10.1016/j.still. 2019.104353.
Azizi A, Abbaspour-Gilandeh Y, Vannier E, Dusseaux R, Mseri-Gundoshmian T, Moghaddam H A. Semantic segmentation: A modern approach for identifying soil clods in precision farming. Biosystems Engineering, 2020; 196: 172–182.
Xu J J, Zhang H, Tang C S, Cheng Q, Liu B, Shi B. Automatic soil desiccation crack recognition using deep learning. Geotechnique, 2021; pp.1–13.
Ma W P, Wang X D, Liu D. Research on YOLO target detection algorithm in GPR image anomaly recognition. Bulletin of Surveying and Mapping, 2019; S1: 72–76. (in Chinese)
Dou Q, Wei L, Magee D R, Cohn A G. Real-time hyperbola recognition and fitting in GPR data. IEEE Transactions on Geoscience and Remote Sensing, 2017; 55(1): 51–62.
Pham M T, Lefèvre S. Buried object detection from B-scan ground penetrating radar data using Faster-RCNN. In: IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia: IEEE, 2018; pp.6804–6807. doi: 10.1109/IGARSS.2018.8517683.
Gong Z M, Zhang H Q. Research on GPR image recognition based on deep learning. In: 2019 International Conference on Computer Science Communication and Network Security (CSCN2019), 2019; 309: 03027. doi: 10.1051/matecconf/202030903027.
Girshick R, Donahue J, Darrell T, Malik J. Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014; pp.580–587.
Yang F, Qiao X, Zhang Y Y, Xu X L. Prediction method of underground pipeline based on hyperbolic asymptote of GPR image. In: Proceedings of the 15th International Conference on Ground Penetrating Radar, IEEE, 2014; pp.674–678. doi: 10.1109/ICGPR.2014.6970511
Gkioxari G, Girshick R, Malik J. Contextual action recognition with R* CNN. In 2015 IEEE International Conference on Computer Vision (ICCV), Santiago: IEEE, 2015; pp.1080–1088. doi: 0.1109/ICCV.2015.129.
He K, Gkioxari G, Dollár P, Girshick R. Mask R-CNN. In: Proceedings of the IEEE international conference on computer vision 2017; pp.2961–2969.
Ren S, He K, Girshick R, Sun J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017; 39(6): 1137–1149.
Rice W, Omwenga M, Wu D L, Liang Y. Enhanced underground object detection with conditional adversarial networks. In: ISSAT International Conference on Data Science & Intelligent Systems, 2019.
Gribbon K T, Bailey D G. A novel approach to real-time bilinear interpolation. In: Proceedings. DELTA 2004. Second IEEE International Workshop on Electronic Design, Test and Applications, Perth: IEEE, 2004; pp.126–131. doi: 10.1109/DELTA.2004.10055.
Janning R, Busche A, Horváth T, Schmidt-Thieme L. Buried pipe localization using an iterative geometric clustering on GPR data. Artificial Intelligence Review, 2014; 42(3): 403–425.
Savelyev T G, van Kempen L, Sahli H, Sachs J, Sato M. Investigation of time–frequency features for GPR landmine discrimination. IEEE Transactions on Geoscience and Remote Sensing, 2006; 45(1): 118–129.
Valueva M V, Nagornov N N, Lyakhov P A, Valuev G V, Chervyakov N I. Application of the residue number system to reduce hardware costs of the convolutional neural network implementation. Mathematics and Computers in Simulation, 2020; 177: 232–243.
Nuzzo L. Coherent noise attenuation in GPR data by linear and parabolic Radon Transform techniques. Annals of Geophysics, 2003; 46(3): 3426. doi: 10.4401/ag–3426.
Benedetto F, Tosti F. GPR spectral analysis for clay content evaluation by the frequency shift method. Journal of Applied Geophysics, 2013; 97: 89–96.
Lachowicz J, Rucka M. Application of GPR method in diagnostics of reinforced concrete structures. Diagnostyka, 2015; 16(2): 31–36.
Tang P, Wang X, Wang A, Yan Y, Liu W, Huang J, et al. Weakly supervised region proposal network and object detection. In: Proceedings of the European conference on computer vision (ECCV), 2018; pp.352–368.
Li J Q, Wu Y, Zhao J Q, Guan L T, Ye C, Yang T. Pedestrian detection with dilated convolution, region proposal network and boosted decision trees. In: 2017 International Joint Conference on Neural Networks (IJCNN), Anchorage: IEEE, 2017; pp.4052–4057.
Lei T, Zhang Q, Xue D H, Chen T, Meng H Y, Nandi A K. End-to-end change detection using a symmetric fully convolutional network for landslide mapping. In: ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton: IEEE, 2019; pp.3027–3031. doi: 10.1109/ICASSP.2019. 8682802.
Yan C, Chen W W, Chen P C, Kendrick Amezquita S, Wu X M. A new two-stage object detection network without RoI-Pooling. In: Proceedings of the 30th Chinese Control And Decision Conference (2018 CCDC), 2018; pp.1680–1685.
Freund Y, Schapire R E. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 1997; 55(1): 119–139.
Li X C, Wang L, Sung E. A study of AdaBoost with SVM based weak learners. In: 2005 IEEE International Joint Conference on Neural Networks, Montreal: IEEE, 2005; 1: 196–201. doi: 10.1109/IJCNN.2005.1555829.
Lin T Y, Maire M, Belongie S, Hay J, Perona P, Ramanan D, et al. Microsoft COCO: Common objects in context. In: European Conference on Computer Vision, 2014; pp.740–755.
Li Y H, Wang X, Zhao Z X, Han S, Liu Z. Lagoon water quality monitoring based on digital image analysis and machine learning estimators. Water Research, 2020; 172: 115471. doi: 10.1016/j.watres. 2020.115471.
Sun L Q, Zou Y B, Li Y, Cai Z D, Li Y, Luo B, et al. Multi target pigs tracking loss correction algorithm based on Faster R-CNN. Int J Agric & Biol Eng, 2018; 11(5): 192–197.
Johnson J W. Adapting Mask-RCNN for automatic nucleus segmentation. arXiv preprint, 2018; arXiv:1805.00500.
Shaodan L, Chen F, Zhide C. A ship target location and mask generation algorithms base on Mask RCNN. International Journal of Computational Intelligence Systems, 2019; 12(2): 1134–1143.
Huang Z D, Zhong Z Y, Sun L, Huo Q. Mask R-CNN with pyramid attention network for scene text detection. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa: IEEE, 2019; pp.764–772.
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015; 521(7553): 436–444.
Schmidhuber J. 2015. Deep learning in neural networks: An overview. Neural Networks, 2015; 61: 85–117.
Chen Y S, Lin Z H, Zhao X, Wang G, Gu Y F. Deep learning-based classification of hyperspectral data. IEEE Journal of Selected Topics in Applied Earth Obserbvations and Remote Sensing, 2014; 7(6): 2094–2107.
He K M, Zhang X Y, Ren S Q, Sun J. Identity mappings in deep residual networks. In European Conference on Computer Vision 2016; pp.630–645.
Zagoruyko S, Komodakis N. Wide residual networks. arXiv, 2016; arXiv preprint arXiv:1605.07146.
Li S, Yuan C X, Cai H B. Integrated processing of image and GPR data for automated pothole detection. Journal of Computing in Civil Engineering, 2016; 30(6): 04016015. doi:10.1061/(ASCE)CP.1943-5487.0000582.
Fu C Y, Liu W, Ranga A, Tyagi A, Berg A C. DSSD: Deconvolutional Single Shot Detector. arXiv preprint, 2017; arXiv:1701.06659.
Lempitsky V, Kohli P, Rother C, Sharp T. Image segmentation with a bounding box prior. In: 2009 IEEE 12th International Conference on Computer Vision, IEEE, 2009; pp.277–284.
Wang G B, Lan Y B, Qi H X, Chen P C, Hewitt A, Han Y X. Field evaluation of an unmanned aerial vehicle (UAV) sprayer: effect of spray volume on deposition and the control of pests and disease in wheat. Pest Management Science, 2019; 75(6): 1546–1555.
Mu G, Chen Y, Wu D, Zhan Y, Zhou X S, Gao Y. Relu Cascade of Feature Pyramid Networks for CT pulmonary nodule detection. In: International Workshop on Machine Learning in Medical Imaging, 2019; pp.444–452.
Ghiasi G, Lin T Y, Le Q V. NAS-FPN: Learning scalable feature pyramid architecture for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2019; pp.7036–7045.
Chiao J Y, Chen K Y, Liao K Y K, Hsieh P H, Zhang G, Huang T C. Detection and classification the breast tumors using mask R-CNN on sonograms. Medicine, 2019; 98(19): e15200. doi: 10.1097/MD. 0000000000015200.
Chen L C, Papandreou G, Schroff F, Adam H. Rethinking atrous convolution for semantic image segmentation. arXiv preprint, 2017; arXiv:1706.05587.
Chen P C, Douzals J P, Lan Y B, Cotteux E, Delpuech X, Pouxviel G, et al. Characteristics of unmanned aerial spraying systems and related spray drift: A review. Frontiers in Plant Science, 2022; 13: 870956. doi: 10.3389/fpls.2022.870956.
Zhan Y L, Chen P C, Xu W C, Chen S D, Han Y F, Lan Y B, et al. Influence of the downwash airflow distribution characteristics of a plant protection UAV on spray deposit distribution. Biosystems Engineering, 2022; 216: 32–45.
Copyright (c) 2023 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.