Short-wavelength light induces broiler’s behavioral and physiological syndrome through a misaligned eating rhythm
Abstract
Keywords: short-wavelength light, broiler, behavior, physiology, environmental control, circadian rhythm, intermittent eating
DOI: 10.25165/j.ijabe.20221503.6456
Citation: Yang Y F, Liu Q, Wang S Y, Zeng L, Pan C H, Jado A, et al. Short-wavelength light induces broiler’s behavioral and physiological syndrome through a misaligned eating rhythm. Int J Agric & Biol Eng, 2022; 15(3): 47–54.
Keywords
Full Text:
PDFReferences
Persson P B, Persson A B. Light and darkness in circadian rhythms. Acta Physiologica, 2018; 222(3): e13036. doi: 10.1111/apha.13036.
Kumari R, Verma V, Kronfeld-Schor N, Singaravel M. Differential response of diurnal and nocturnal mammals to prolonged altered light-dark cycle: a possible role of mood associated endocrine, inflammatory and antioxidant system. Chronobiology International, 2021; 38(11): 1618–1630.
Schubert E F, Kim J K. Solid-state light sources getting smart. Science, 2005; 308(5726): 1274–1278.
Hölker F, Wolter C, Perkin E K, Tockner K. Light pollution as a biodiversity threat. Trends in Ecology & Evolution, 2010; 25(12): 681–682.
Kumar V, Singh B P, Sangeetarani R. The bird clock: A complex, multi-oscillatory and highly diversified system. Biological Rhythm Research, 2004; 35(1-2): 121–144.
Patke A, Young M W, Axelrod S. Molecular mechanisms and physiological importance of circadian rhythms. Nature Reviews Molecular Cell Biology, 2020; 21(2): 67–84.
Foster R G. Sleep, circadian rhythms and health. Interface Focus, 2020; 10(3): 20190098. doi: 10.1098/rsfs.2019.0098
Albrecht U. Timing to perfection: the biology of central and peripheral circadian clocks. Neuron, 2012; 74(2): 246. doi: 10.1016/j.neuron.2012. 04.006.
Ryosuke E, Shigeru K, Daisuke O, Hasan M T, Tetsuo U, Sato Hand Ken-Ichi H. The role of the pineal organ and the suprachiasmatic nucleus in the control of circadian locomotor rhythms in the Java sparrow, Padda oryzivora. Journal of Comparative Physiology, 1981; 141(2): 207–214.
Steele C T, Zivkovic B D, Siopes T, Underwood H. Ocular clocks are tightly coupled and act as pacemakers in the circadian system of Japanese quail. American Journal of Physiology Regulatory Integrative & Comparative Physiology, 2003; 284(1): 208–218.
Takahashi J S, Menaker M. Role of the suprachiasmatic nuclei in the circadian system of the house sparrow, Passer domesticus. Journal of Neuroscience the Official Journal of the Society for Neuroscience, 1982; 2(6): 815–828.
Bailey M J, Beremand P D, Hammer R, Bell-Pedersen D, Thomas T L, Cassone V M. Transcriptional profiling of the chick pineal gland, a photoreceptive circadian oscillator and pacemaker. Molecular Endocrinology, 2003; 17(10): 2084–2095.
Falcón J, Besseau L, Fuentès M, Sauzet S, Magnanou E, Boeuf G. Structural and functional evolution of the pineal melatonin system in vertebrates. Annals of the New York Academy of Sciences, 2009; 1163(1): 101. doi: 10.1111/j.1749-6632.2009.04435.x.
Okano T, Fukada Y. Photoreception and circadian clock system of the chicken pineal gland. Microscopy Research & Technique, 2001; 53(1): 72–80.
Yamamoto K, Okano T, Fukada Y. Chicken pineal Cry genes: light-dependent up-regulation of cCry1 and cCry2 transcripts. Neuroscience Letters, 2001; 313(1-2): 13–16.
Turek F W, Joshu C, Kohsaka A, Lin E, Ivanova G, Mcdearmon E, et al. Obesity and metabolic syndrome in circadian Clock mutant mice. Science, 2005; 308(5724): 1043–1045.
Reinke H, Asher G. Crosstalk between metabolism and circadian clocks. Nature Reviews Molecular Cell Biology, 2019; 20(4): 227–241.
Stenvers D J, Scheer F A J L, Schrauwen P, la Fleur S E, Kalsbeek A. Circadian clocks and insulin resistance. Nature Reviews Endocrinology, 2019; 15(2): 75–89.
Berson D M, Dunn F A, Takao M. Phototransduction by retinal ganglion cells that set the circadian clock. Science, 2002; 295(5557): 1070–1073.
Hattar S, Lucas R J, Mrosovsky N, Thompson S, Douglas R H, Hankins M W, et al. Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice. Nature, 2003; 424(6944): 76–81.
Dacey D M, Liao H W, Peterson B B, Robinson F R, Smith V C, Pokorny J, et al. Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN. Nature, 2005; 433(7027): 749–754.
Chang A M, Aeschbach D, Duffy J F, Czeisler C A. Evening use of light-emitting eReaders negatively affects sleep, circadian timing, and next-morning alertness. Proceedings of the National Academy of Sciences of the United States of America, 2015; 112(4): 1232–1237.
Zaidi F H, Hull J T, Peirson S, Wulff K, Aeschbach D, Gooley J J, et al. Short-wavelength light sensitivity of circadian, pupillary, and visual awareness in humans lacking anouter retina. Current Biology, 2007; 17(24): 2122–2128.
Cajochen C, Münch M, Kobialka S, Kräuchi K, Steiner R, Oelhafen P, et al. High sensitivity of human melatonin, alertness, thermoregulation, and heart rate to short wavelength light. J Clin Endocrinol Metab, 2005; 90(3): 1311–1316.
Malik S, Rani S, Kumar V. Wavelength dependency of light-induced effects on photoperiodic clock in the migratory blackheaded bunting (Emberiza melanocephala). Chronobiology International, 2009; 21(3): 367–384.
Yadav G, Malik S, Rani S, Kumar V. Role of light wavelengths in synchronization of circadian physiology in songbirds. Physiology & Behavior, 2015; 140(3): 164–171.
Zawilska J B, Vivienroels B, Skene D J, Pévet P, Nowak J Z. Phase-shifting effects of light on the circadian rhythms of 5-methoxytryptophol and melatonin in the chick pineal gland. Journal of Pineal Research, 2000; 29(1): 1–7.
Jin E, Jia L, Li J, Yang G, Wang Z, Cao J, et al. Effect of monochromatic light on melatonin secretion and Arylalkylamine N-Acetyltransferase mRNA expression in the retina and pineal gland of broilers. The Anatomical Record, 2011; 294(7): 1233–1241.
Jiang N, Wang Z, Cao J, Dong Y, Chen Y. Role of monochromatic light on daily variation of clock gene expression in the pineal gland of chick. Journal of Photochemistry & Photobiology B: Biology, 2016; 164: 57–64.
Yang Y, Liu Q, Wang T, Pan J. Wavelength-specific artificial light disrupts molecular clock in avian species: A power-calibrated statistical approach. Environmental Pollution, 2020; 265: 114206. doi: 10.1016/ j.envpol.2020.114206.
Seifert M, Baden T, Osorio D. The retinal basis of vision in chicken. In: Seminars in Cell & Developmental Biology. Academic Press, 2020; 106: 106–115.
Pan J, Fadel J G, Zhang R, El-Mashad H M, Ying Y, Rumsey T. Evaluation of sample preservation methods for poultry manure. Poultry Science, 2009; 88(8): 1528–1535.
Ishii T, Sato K, Kakumoto T, Miura S, Touhara K, Takeuchi S, et al. Light generation of intracellular Ca2+ signals by a genetically encoded protein BACCS. Nature Communications, 2015; 6: 8021. doi: https://doi.org/10.1038/ncomms9021.
Yang Y, Yu Y, Yang B, Zhou H, Pan J. Physiological responses to daily light exposure. Scientific Reports, 2016; 6: 24808. doi: 10.1038/ srep24808.
Borges S A, Da Silva A V F, Majorka A, Hooge D M, Cummings K R. Physiological responses of broiler chickens to heat stress and dietary electrolyte balance (sodium plus potassium minus chloride, milliequivalents per kilogram). Poultry Science, 2004; 83(9): 1551–1558.
Hamm L L, Hering-Smith K S, Nakhoul N L. Acid-base and potassium homeostasis. Seminars in Nephrology, 2013; 33(3): 257–264.
Flourakis M, Kula-Eversole E, Hutchison A L, Han T H, Aranda K, Moose D L, et al. A conserved bicycle model for circadian clock control of membrane excitability. Cell, 2015; 162(4): 836–848.
Piaggi P. Metabolic determinants of weight gain in humans. Obesity, 2019; 27(5): 691–699.
Kenny P J. Reward mechanisms in obesity: New insights and future directions. Neuron, 2011; 69(4): 664–679.
Xie D, Li J, Wang Z X, Cao J, Li T T, Chen J L, et al. Effects of monochromatic light on mucosal mechanical and immunological barriers in the small intestine of broilers. Poultry Science, 2011; 90(12): 2697–2704.
Ding L A, Li J S. Gut in diseases: Physiological elements and their clinical significance. World Journal of Gastroenterology, 2003; 9(11): 2385–2389.
Arble D M, Bass J, Laposky A D, Vitaterna M H, Turek F W. Circadian timing of food intake contributes to weight gain. Obesity, 2009; 17(11): 2100–2102.
Yadav G, Malik S, Rani S, Kumar V. Role of light wavelengths in synchronization of circadian physiology in songbirds. Physiology & Behavior, 2015; 140: 164–171.
Eckel-Mahan K, Sassone-Corsi P. Metabolism control by the circadian clock and vice versa. Nature Structural & Molecular Biology, 2009; 16(5): 462–467.
Salgado-Delgado R, Angeles-Castellanos M, Saderi N, Buijs R M, Escobar C. Food intake during the normal activity phase prevents obesity and circadian desynchrony in a rat model of night work. Endocrinology, 2010; 151(3): 1019–1029.
Scheer F A, Hilton M F, Mantzoros C S, Shea S A. Adverse metabolic and cardiovascular consequences of circadian misalignment. Proceedings of the National Academy of Sciences of the United States of America, 2009; 106(11): 4453–4458.
Jiang N, Wang Z X, Cao J, Dong Y L, Chen Y X. Effect of monochromatic light on circadian rhythmic expression of clock genes in the hypothalamus of chick. Journal of Photochemistry and Photobiology B-Biology, 2017; 173: 476–484.
Ma Y S, Bertone E R, Stanek E J, Reed G W, Hebert J R, Cohen N L, et al. Association between eating patterns and obesity in a free-living US adult population. American Journal of Epidemiology, 2003; 158(1): 85–92.
Hatori M, Vollmers C, Zarrinpar A, Ditacchio L, Bushong E A, Gill S, et al. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metabolism, 2012; 15(6): 848–860.
Chaix A, Zarrinpar A, Miu P, Panda S. Time-restricted feeding is a preventative and therapeutic intervention against diverse nutritional challenges. Cell Metabolism, 2014; 20(6): 991–1005.
Copyright (c) 2022 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.