Method for the automatic recognition of cropland headland images based on deep learning
Abstract
Keywords: cropland image, deep learning, image recognition, model compression, MobileNetV2 network
DOI: 10.25165/j.ijabe.20231602.6195
Citation: Qiao Y J, Liu H, Meng Z J, Chen J P, Ma L Y. Method for the automatic recognition of cropland headland images based on deep learning. Int J Agric & Biol Eng, 2023; 16(2): 216-224.
Keywords
Full Text:
PDFReferences
Hu J T, Gao L, Bai X P, Li T C, Liu X G. Review of research on automatic guidance of agricultural vehicles. Transactions of the CSAE, 2015; 31(10): 1-10. (in Chinese)
Csornai G, László I, Suba Z, Nádor G, Bognár E, Hubik I, et al. 2007. The integrated utilization of satellite images in Hungary: Operational applications from crop monitoring to ragweed control. In: New Developments and Challenges in Remote Sensing, 2007; pp.15-23.
Chen J, Chen T Q, Mei X M, Shao Q F, Deng M. Hilly farmland extraction from high resolution remote sensing imagery based on optimal scale selection. Transactions of the CSAE, 2014; 30(5): 99-107. (in Chinese)
Bay H, Tyutelaars T, Van Gool L. SURF: Speeded up robust features. In: Computer Vision - ECCV 2006, Springer, 2006; pp.404-417. doi: 10.1007/11744023_32.
Lowe D G. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60(2):91-110.
Watanabe T, Ito S, Yokoi K. Co-occurrence histograms of oriented gradients for human detection. IPSJ Transactions on Computer Vision and Applications, 2010; 2: 39-47.
Lecun Y, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998; 86(11): 2278-2324.
Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks. Communications of the ACM, 2012; 60(6): 84-90.
Szegedy C, Liu W, Jia Y Q, Sermanet P, Reed S, Anguelov D, et al. Going deeper with convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2015; pp.1-9.
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv, 2014; arXiv: 1409.1556.
He K M, Zhang X Y, Ren S Q, Sun J. Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision & Pattern Recognition (CVPR), IEEE, 2016; pp.770-778.
Zhu S P, Zhu J X, Huang H, Li G L. Wheat Grain Integrity Image Detection System Based on CNN. Transactions of the CSAM, 2020; 51(5): 36-42. (in Chinese)
Yang K, Liu H, Wang P, Meng Z J, Chen J P. Convolutional neural network-based automatic image recognition for agricultural machinery. Int J Agric & Biol Eng, 2018; 11(4): 200-206.
Zhao L X, Hou F D, Lu Z C, Zhu H C, Ding X L. Image recognition of cotton leaf diseases and pests based on transfer learning. Transactions of the CSAE, 2020; 36(7): 184-191. (in Chinese)
Xu J H, Shao M Y, Wang Y C, Han W T. Recognition of corn leaf spot and rust based on transfer learning with convolutional neural network. Transactions of the CSAM, 2020; 51(2): 230-236, 253. (in Chinese)
Kim W-S, Lee D-H, Kim T, Kim G, Kim H, Sim T, et al. One-shot classification-based tilled soil region segmentation for boundary guidance in autonomous tillage. Computers and Electronics in Agriculture, 2021; 189: 106371. doi: 10.1016/j.compag.2021.106371.
He Y, Zhang X Y, Zhang Z Q, Fang H. Automated detection of boundary line in paddy field using MobileV2-UNet and RANSAC. Computers and Electronics in Agriculture, 2022; 194: 106697. doi: 10.1016/j.compag.2022.106697.
Qiao Y J, Yang P S, Meng Z J, Wang Q, Liu H. Detection system of headland boundary line based on machine vision. Journal of Agricultural Mechanization Research, 2022; 44(11): 24-30. (in Chinese)
GB/T 21010-2017. Current land use classification. Ministry of Natural Resources, China, 2017. (in Chinese)
Addo K A. Urban and peri-urban agriculture in developing countries studied using remote sensing and in situ methods. Remote Sensing, 2010; 2(2): 479-513.
Dwork C, Feldman V, Hardt M, Pitassi T, Reingold O, Roth A. The reusable holdout: Preserving validity in adaptive data analysis. Science, 2015; 349(6248): 636-638.
Hinton G, Vinyals O, Dean J. Distilling the knowledge in a neural network. arXiv preprint, 2015; arXiv:1503.02531.
Jaderberg M, Vedaldi A, Zisserman A. Speeding up convolutional neural networks with low rank expansions. arXiv preprint, 2014; arXiv:1405.3866.
Li H, Kadav A, Durdanovic I, Samet H, Graf H P. Pruning filters for efficient convnets. arXiv preprint, 2016; arXiv:1608.08710.
Cai Z W, He X D, Sun J, Vasconcelos N. Deep learning with low precision by half-wave Gaussian quantization. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017; pp.5406-5414. doi: 10.1109/CVPR.2017.574.
Weiss K, Khoshgoftaar T M, Wang D D. A survey of transfer learning. Journal of Big Data, 2016; 3: 9. doi: 10.1186/s40537-016-0043-6.
Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, et al. ImageNet large scale visual recognition challenge. International Journal of Computer Vision, 2015; 115(3): 211-252.
Sandler M, Howard A, Zhu M L, Zhmoginov A. Mobilenetv2: Inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018; pp.4510-4520. doi:10.1109/CVPR.2018.00474.
Howard A G, Zhu M, Chen B, Kalenichenko D, Wang W J, Weyand T, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint, 2017; arXiv:1704.04861.
Glorot X, Bordes A, Bengio Y. Deep sparse rectifier neural networks. Journal of Machine Learning Research, 2011; 15: 315-323.
Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research, 2014; 15(1): 1929-1958.
Şimşekli U, Zhu L, Teh Y W, Gürbüzbalaban M. Fractional underdamped langevin dynamics: Retargeting SGD with momentum under heavy-tailed gradient noise. arXiv preprint, 2020; arXiv:2002.05685.
He K M, Zhang X Y, Ren S Q, Sun J. Identity mappings in deep residual networks. In: Computer Vision – ECCV 2016, Springer, 2016; pp.630-645.
Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the inception architecture for computer vision. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2016; pp.2818-2826.
Copyright (c) 2023 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.