Multi-target pig tracking algorithm based on joint probability data association and particle filter
Abstract
Keywords: joint probability data association, pig tracking, particle filter, centroid
DOI: 10.25165/j.ijabe.20211404.6105
Citation: Sun L Q, Li Y Y. Multi-target pig tracking algorithm based on joint probability data association and particle filter. Int J Agric & Biol Eng, 2021; 14(4): 199–207.
Keywords
Full Text:
PDFReferences
Goodridge W, Bernard M, Jordan R, Rampersad R. Intelligent diagnosis of diseases in plants using a hybrid Multi-Criteria decision making technique. Computers & Electronics in Agriculture, 2017; 133(2): 80–87.
Moody F H, Wilkerson J B, Hart W E, Goodwin J E, Funk P A. Non-intrusive flow rate sensor for harvester and gin applications. In: Proc. Beltwide Cotton Conf., Natl. Cotton Counc. Am., Memphis, TN. 2000; pp.410–415.
Xiong J T, He Z L, Lin R, Liu Z, Bu R B, Yang Z G, et al. Visual positioning technology of picking robots for dynamic litchi clusters with disturbance. Computers & Electronics in Agriculture, 2018; 151: 226–237.
Hiremath S A, van der Heijden G W A M, van Evert F K, Stein A, ter Braak C J F. Laser range finder model for autonomous navigation of a robot in a maize field using a particle filter. Computers & Electronics in Agriculture, 2014; 100: 41–50.
Shu G, Dehghan A, Orifej O, Hand E, Shah M. Part-based multiple-person tracking with partial occlusion handling. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI: IEEE, 2012; pp.1815–1821. doi: 10.1109/CVPR.2012.6247879.
Milan A, Roth S, Schindler K. Continuous energy minimization for multi-target tracking. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2014; 36(1): 58–72.
Zhang L, Li Y, Nevatia R. Global data association for multi-object tracking using network flows. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2008; pp.1–8. doi: 10.1109/ CVPR.2008.4587584.
Yang Y, Li D. Robust player detection and tracking in broadcast soccer video based on enhanced particle filter. Journal of Visual Communication & Image Representation, 2017; 46: 81–94.
Ma X B, Sun S F, Qin Y S, Hu S. Adaptive fusion color and Haar-like feature object tracking based on particle filter. Japanese Journal of Applied Physics, 2013; 45(1): 3686–3689.
Ma L, Hu W M. Adaptive tracking with patches and a new particle filter. In: The First Asian Conference on Pattern Recognition. Beijing: IEEE, 2012; pp.387–391. doi: 10.1109/ACPR.2011.6166653.
Zuriarrain I, Mekonnen A A, Lerasle F, Arana N. Tracking-by-detection of multiple persons by a resample-move particle filter. Machine Vision and Applications, 2013; 24(8): 1751–1765.
Chavali P, Nehorai A. Hierarchical particle filtering for multi-modal data fusion with application to multiple–target tracking. Signal Processing, 2014; 97(7): 207–220.
Butt A A, Collins R T. Multi-target tracking by Lagrangian relaxation to min-cost network flow. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland, OR: IEEE, 2013; pp.1846–1853. doi: 10.1109/CVPR.2013.241.
Chen X, Li Y A, Li Y X, Yu J, Li X H. A novel probabilistic data association for target tracking in a cluttered environment. Sensors, 2016; 16(12): 2180. doi: 10.3390/s16122180.
Yi Y, Mo Z, Tan J W. A novel hierarchical data association with dynamic viewpoint model for multiple targets tracking. Journal of Visual Communication & Image Representation, 2016; 34: 37–49.
Tchamova A, Dezert J, Semerdjiev T, Konstantinova P. Target tracking with generalized data association based on the general DSm rule of combination. Siam Journal on Control & Optimization, 2004; 49(2): 339–362.
Kim C, Li F X, Ciptadi A, Rehg J M. Multiple hypothesis tracking revisited. In: 2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015; pp.4696–4704. doi: 10.1109/ICCV.2015.533
Rasmussen C, Hager G D. Probabilistic data association methods for tracking complex visual objects. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2001; 23(6): 560–576.
Gauvrit H, Cadre J P L, Jauffret C. A formulation of multitarget tracking as an incomplete data problem. IEEE Transactions on Aerospace & Electronic Systems, 1997; 33(4): 1242–1257.
Yang F, Wang Y Q, Chen H, Zhang P Y. Adaptive collaborative Gaussian mixture probability hypothesis density filter for multi-target tracking. Sensors, 2016; 16(10):1666. doi: 10.3390/s16101666.
Streit R L, Luginbuhl T E. Maximum likelihood method for probabilistic multihypothesis tracking. In: Proceedings of SPIE – The International Scociety for Optical Engineering, 1994; pp.394–405. doi: 10.1117/ 12.179066.
Rezatofighi S H, Milan A, Zhang Z, Shi Q F, Dick A, Reid I. Joint probabilistic data association revisited. In: 2015 IEEE International Conference on Computer Vision (ICCV). Santiago: IEEE, 2016; pp.3047–3055. doi: 10.1109/ICCV.2015.349.
Li Y Y, Sun L Q, Zou Y B, Li Y. Individual pig object detection algorithm based on Gaussian mixture model. Int J Agric & Biol Eng, 2017; 10(5): 186–193
Sun L Q, Li Z Y, Duan Q L, Sun X X. Automatic monitoring of pig excretory behavior based on motion feature. Sensor Letters, 2014; 12(3): 673–677. doi: 10.1166/sl.2014.3123.
Li Y Y, Sun L Q, Sun, X X. Automatic tracking of pig feeding behavior based on particle filter with multi-feature fusion. Transactions of the CSAE, 2017; 33(Supp. 1): 246–252. (in Chinese).
Matthews S G, Miller A L, Ploetz T, Kyriazakis I. Automated tracking to measure behavioural changes in pigs for health and welfare monitoring. Scientific Reports, 2017; 7: 17582. doi: 10.1038/s41598-017-17451-6.
Wang F L, Zhen Y, Zhong B N, Ji R R. Robust infrared target tracking based on particle filter with embedded saliency detection. Information Sciences, 2015; 301: 215–226.
Mansouri M, Destain M F. An improved particle filtering for time-varying nonlinear prediction of biomass and grain protein content. Computers & Electronics in Agriculture, 2015; 114: 145–153.
Comaniciu D, Ramesh V, Meer P. Real-time tracking of non-rigid objects using mean shift. In: 2000 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2000; pp.142–149. doi: 10.1109/CVPR.2000.854761.
Copyright (c) 2021 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.