Cost-effective method for degradability identification of MSW using convolutional neural network for on-site composting
Abstract
Keywords: municipal solid waste, degradability identification, cost-effective, CNN, on-site composting, image classification
DOI: 10.25165/j.ijabe.20211404.5838
Citation: Huang J J, Dai S H, Hu H M, Zhang H D, Xie J X, Li M. Cost-effective method for degradability identification of MSW using convolutional neural network for on-site composting. Int J Agric & Biol Eng, 2021; 14(4): 233–237.
Keywords
Full Text:
PDFReferences
Sharma K D, Jain S. Municipal solid waste generation, composition, and management: the global scenario. Social Responsibility Journal, 2020; 16(6): 917–948.
Ayilara M S, Olanrewaju O S, Babalola O O, Odeyemi O. Waste management through composting: Challenges and potentials. Sustainability, 2020; 12(11): 4456–4479.
Onwosi C O, Ndukwe J K, Aliyu G O, Chukwu K O, Ezugworie FN, Igbokwe V C. Composting: An eco-friendly technology for sustainable agriculture. In: Ecological and Practical Applications for Sustainable Agriculture: Springer; 2020; pp.179–206.
Pergola M, Persiani A, Palese A M, Di Meo V, Pastore V, D’Adamo C, et al. Composting: The way for a sustainable agriculture. Applied Soil Ecology, 2018; 123: 744–750.
Kulikowska D, Gusiatin Z M, Bułkowska K, Kierklo K. Humic substances from sewage sludge compost as washing agent effectively remove Cu and Cd from soil. Chemosphere, 2015; 136: 42–49.
Hestmark K, Fernández-Bayo J, Harrold D, Randall T, Achmon Y, Stapleton J, et al. Compost induces the accumulation of biopesticidal organic acids during soil biosolarization. Resources, Conservation and Recycling, 2019; 143: 27–35.
Huerta-Pujol O, Soliva M, Giró F, López M. Heavy metal content in rubbish bags used for separate collection of biowaste. Waste management, 2010; 30(8-9): 1450–1456.
Alvarez M, Sans R, Garrido N, Torres A. Factors that affect the quality of the bio-waste fraction of selectively collected solid waste in Catalonia. Waste Management, 2008; 28(2): 359–366.
Wei Y, Li J, Shi D, Liu G, Zhao Y, Shimaoka T. Environmental challenges impeding the composting of biodegradable municipal solid waste: A critical review. Resources, Conservation and Recycling, 2017; 122: 51–65.
Huang J J, Dai S H, Zhang L, Xiong X Y, Li M. Design and experimental research on the organic fertilizer manufacturing equipment for domestic garbage. Journal of Hunan Agricultural University(Natural Sciences), 2019; 45(3): 332–336. (in Chinese)
Tong Y, Liu J, Liu S. China is implementing “Garbage Classification” action. Environmental Pollution, 2020; 259: 113707. doi: 10.1016/j.envpol.2019.113707.
Xiao W, Yang J, Fang H, Zhuang J, Ku Y. A robust classification algorithm for separation of construction waste using NIR hyperspectral system. Waste Management, 2019; 90: 1–9.
Zhao D E, Wu R, Zhao B G, Chen Y Y. Research on garbage classification and recognition based on hyperspectral imaging technology. Spectroscopy and Spectral Analysis, 2019; 39(3): 917–922. (in Chinese)
Vrancken C, Longhurst P, Wagland S. Deep learning in material recovery: Development of method to create training database. Expert Systems with Applications, 2019; 125: 268–280.
White G, Cabrera C, Palade A, Li F, Clarke S. WasteNet: Waste classification at the edge for smart bins. 2020; arXiv preprint arXiv: 2006.05873,
Rabano S L, Cabatuan M K, Sybingco E, Dadios E P, Calilung E J. Common garbage classification using mobilenet. In: 2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM), 2018; pp.1-4. doi: 10.1109/HNICEM.2018.8666300.
Kang Z, Yang J, Li G, Zhang Z. An automatic garbage classification system based on deep learning. IEEE Access, 2020; 8: 140019–140029. doi: 10.1109/ACCESS.2020.3010496.
Wen C H, Li J, Dong X. Intelligent domestic garbage recognition based on faster RCNN. Laser & Optoelectronics Progress, 2020; 57(20): 139–145. (in Chinese)
Li H B, Liao X G, Chen L. Automatic plastic detection system based on one-Stage machine learning algorithm on object detection. Plastics Science and Technology, 2020; 48(12): 86–89. (in Chinese)
Schmidhuber J. Deep learning in neural networks: An overview. Neural Networks, 2015;61: 85–117.
Yang K, Liu H, Wang P, Meng Z, Chen J. Convolutional neural network-based automatic image recognition for agricultural machinery. Int J Agric & Biol Eng, 2018; 11(4): 200–206.
He K, Zhang X, Ren S, Sun J, editors. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016; pp.770–778.
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. 2014; arXiv preprint arXiv:14091556.
Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 2012; 25: 1097–1105.
Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, et al., editors. Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2015; pp.1–9. doi: 10.1109/CVPR.2015.7298594.
Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research, 2014; 15(1): 1929–1958.
Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, et al. Tensorflow: A system for large-scale machine learning. In: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), 2016; pp.265–283.
Ruder S. An overview of gradient descent optimization algorithms. arXiv preprint, 2016; arXiv:1609.04747.
Copyright (c) 2021 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.