Anti-blocking performance of ultrahigh-pressure waterjet assisted furrow opener for no-till seeder
Abstract
Keywords: waterjet, ultrahigh-pressure, conservation tillage, maize stalks, cutting, no-till, anti-blocking
DOI: 10.25165/j.ijabe.20201302.5630
Citation: Hu H N, Li H W, Wang Q J, He J, Lu C Y, Wang Y B, et al. Anti-blocking performance of ultrahigh-pressure waterjet assisted furrow opener for no-till seeder. Int J Agric & Biol Eng, 2020; 13(2): 64–70.
Keywords
Full Text:
PDFReferences
Pittelkow C M, Liang X Q, Linquist B A, van Groenigen K J, Lee J, Lundy M K, et al. Productivity limits and potentials of the principles of conservation agriculture. Nature, 2015; 517(7534): 365–368.
Wang Q, Zhu L T, Li M W, Huang D Y, Jia H L. Conservation agriculture using coulters: Effects of crop residue on working performance. Sustain., 2018; 10(11): 1–15.
Rolf D, Theodor F, Amir K, Li H. Current status of adoption of no-till farming in the world and some of its main benefits. Int. J. Agric. Biol. Eng., 2010; 3(1): 1–25.
Yang L, Zhang R, Gao N N, Cui T, Liu Q W, Zhang D X. Performance of no-till corn precision planter equipped with row cleaners. Int. J. Agric. Biol. Eng., 2015; 8(5): 15–25.
Zeng Z, Chen Y. The performance of a fluted coulter for vertical tillage as affected by working speed. Soil Tillage Res., 2018; 175: 112–118.
Smith D R, Warnemuende-Pappas E A. Vertical tillage impacts on water quality derived from rainfall simulations. Soil Tillage Res., 2015; 153: 155–160.
Matin M A, Fielke J M, Desbiolles J M A. Furrow parameters in rotary strip-tillage: Effect of blade geometry and rotary speed. Biosyst. Eng., 2014; 118(1): 7–15.
Susuzlu T, Hoogstrate A M, Karpuschewski B. Initial research on the ultra-high pressure waterjet up to 700 MPa. J. Mater. Process. Technol., 2004; 149(1-3): 30–36.
Liu X C, Liang Z W, Wen G L, Yuan X F. Waterjet machining and research developments: a review. Int. J. Adv. Manuf. Technol., 2019; 102: 1257–1335.
Zhao Z, Yu C, Zhong J, Huang J, Zhang X. Numerical Simulation on Continuous Non-submerged Water Jet Vibration Cleaning Process for Granular Agricultural Products. Transactions of the CSAM, 2018; 49(8): 331–337. (in Chinese)
Wang L, Chen Q. Experimental study on washing cherry tomatoes with submerged jets mechanism. Transactions of the CSAE, 2007; 23(9): 86–90. (in Chinese)
Wang L, Ding X. Experimental investigation of washing vegetables with submerged jets of water. Transactions of the CSAE, 2007; 23(12):
–130. (in Chinese)
Wang L. Working principle and kinematic analysis of submerged jet vegetable washer. Transactions of the CSAE, 2007; 23(6): 130–135. (in Chinese)
Wang J, Yang S, Xie Q, Yi J. Experiment and operating parameter optimization using water jet technology for scallops shucking processing. Transactions of the CSAE, 2017; 33(7): 289–294. (in Chinese)
Rao R V, Rai D P, Balic J. Multi-objective optimization of abrasive waterjet machining process using Jaya algorithm and PROMETHEE Method. J. Intell. Manuf., 2019; 30(5): 2101–2127.
Oh T M, Cho G C. Rock cutting depth model based on kinetic energy of abrasive waterjet. Rock Mech. Rock Eng., 2016; 49(3): 1059–1072.
Aydin G, Karakurt I, Aydiner K. Prediction of the cut depth of granitic rocks machined by abrasive waterjet (AWJ). Rock Mech. Rock Eng., 2013; 46(5): 1223–1235.
Aydin G, Karakurt I, Aydiner K. Performance of abrasive waterjet in granite cutting: Influence of the textural properties. J. Mater. Civ. Eng., 2012; 24(7): 944–949.
Den Dunnen S, Kraaij G, Biskup C, Kerkhoffs G M M J, Tuijthof G J M. Pure waterjet drilling of articular bone: An in vitro feasibility study. Stroj. Vestnik/Journal Mech. Eng., 2013; 59(7–8): 425–432.
Hu H, Li H, Wang Q, He J, Lu C, Wang Y, Wang C. Performance of waterjet on cutting maize stalks: A preliminary investigation. Int. J. Agric. Biol. Eng., 2019; 12(5): 64–70.
Wang P, Zhao B, Ni H J, Li Z N, Liu Y D, Chen X Y. Research on the modulation mechanism and rock breaking efficiency of a cuttings waterjet. Energy Sci. Eng., 2019; 7(5): 1687–1704.
Zhang X, Li H, Du R, Ma S, He J,Wang Q, et al. Effects of key design parameters of tine furrow opener on soil seedbed properties. Int. J. Agric. Biol. Eng., 2016; 9(3): 67–80.
Chinese Standard Committee. No or little-tillage fertilizes-seeder, GB/T 20865-2017. Chinese Standard Press, China, 2017. (in Chinese).
Qin K, Ding W, Ahmad F, Fang Z. Design and experimental validation of sliding knife notch-type disc opener for a no-till combine harvester cum seed drill. Int. J. Agric. Biol. Eng., 2018; 11(4): 76–85.
Chaudhuri D. Performance evaluation of various types of furrow openers on seed drills - a review. J. Agric. Eng. Res., 2001; 79(2): 125–137.
Solhjou A, Fielke J M, Desbiolles J M A. Soil translocation by narrow openers with various rake angles. Biosyst. Eng., 2012; 112(1): 65–73.
Mabrouki T, Raissi K, Cornier A. Numerical simulation and experimental study of the interaction between a pure high-velocity waterjet and targets: Contribution to investigate the decoating process. Wear, 2000; 239(2): 260–273.
Karakurt I, Aydin G, Aydiner K. An experimental study on the depth of cut of granite in abrasive waterjet cutting. Mater. Manuf. Process., 2012; 27(5): 538–544
Yuvaraj N, Kumar M P. Investigation of process parameters influence in abrasive water jet cutting of D2 steel. Mater. Manuf. Process., 2017; 32(2): 151–161.
Li H, Wang J. An experimental study of abrasive waterjet machining of Ti-6Al-4V. Int. J. Adv. Manuf. Technol., 2015; 81(1-4): 361–369.
Thanomputra S, Kiatiwat T. Simulation study of cutting sugarcane using fine sand abrasive waterjet. Agric. Nat. Resour., 2016; 50(2): 146–153.
Xue Y, Si H, Xu D, Yang Z. Experiments on the microscopic damage of coal induced by pure water jets and abrasive water jets. Powder Technol., 2018; 332(2017): 139–149.
Copyright (c) 2020 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.