Predicting the excretion of feces, urine and nitrogen using support vector regression: A case study with Holstein dry cows
Abstract
Keywords: cow farming pollution, feces/urine excretion prediction, nitrogen excretion prediction, non-parametric model, SVR technique
DOI: 10.25165/j.ijabe.20201302.4781
Citation: Fu Q, Shen W Z, Wei X L, Yin Y L, Zheng P, Zhang Y G, et al. Predicting the excretion of feces, urine and nitrogen using support vector regression: A case study with Holstein dry cows. Int J Agric & Biol Eng, 2020; 13(2): 48–56.
Keywords
Full Text:
PDFReferences
Li Y, Pan L G, Li A, Wang B H. Suitability evaluation of remediation technology for polluted farmland. Int J Agric & Biol Eng, 2015; 8(2): 39–45.
Franzluebbers A J, Lemaire G, de Faccio Carvalho P C, Sulc R M.. Toward agricultural sustainability through integrated crop-livestock systems: Environmental outcomes. Agric, Ecosyst & Environ, 2014; 190: 1–3.
Fan M, Zhu H G, Ma J Q. Measurement and analysis of biogas fertilizer use efficiency, nutrient distribution and influencing factors of biogas residues and slurry on pig farms. Int J Agric & Biol Eng, 2014; 7(1): 60–69.
Abbasi I H R, Abbasi F, El-Hack M A, Abdel-Latif M A, Soomro R N, Hayat K, et al. Critical analysis of excessive utilization of crude protein in ruminants ration: impact on environmental ecosystem and opportunities of supplementation of limiting amino acids-a review. Environ Sci & Pollut Res Int., 2018; 25(1): 181–190.
Anwar Z, Irshad M, Ping A, Hafeez F, Yang S. Water extractable plant nutrients in soils amended with cow manure co-composted with maple tree residues. Int J Agric & Biol Eng, 2018; 11(5): 167–173.
Mallin M A, Cahoon L B. Industrialized animal production—A major source of nutrient and microbial pollution to aquatic ecosystems. Popul & Environ, 2003; 24(5): 369–385.
Cambra-López M, Aarnink A J A, Zhao Y, Calvet S, Torres A G. Airborne particulate matter from livestock production systems: a review of an air pollution problem. Environ Pollut, 2010; 158(1): 1–17.
Mallin M A, Mciver M R, Robuck A R, Dickens A K. Industrial swine and poultry production causes chronic nutrient and fecal microbial stream pollution. Water, Air, & Soil Pollut, 2015; 226: 407.
Nansubuga I, Banadda N, Babu M, De Vrieze J, Verstraete W, Rabaey K. Enhancement of biogas potential of primary sludge by co-digestion with cow manure and brewery sludge. Int J Agric & Biol Eng, 2015; 8(4): 86–94.
Smith A P, Western A W. Predicting nitrogen dynamics in a dairy farming catchment using systems synthesis modelling. Agric Syst, 2013; 115(115): 144–154.
Qu Q B, Yang P, Zhai Z W, Zhang K Q. Prediction methods of major pollutants production in manure from large-scale livestock and poultry farms: A review. J Agric Resour & Environ, 2016; 33(5): 397–406. (in Chinese)
Gan L, Hu X. The pollutants from livestock and poultry farming in China-geographic distribution and drivers. Environ Sci Pollut Res Int, 2016; 23(9): 8470–8483.
Zhou T M, Fu Q, Zhu Y Q, Hu Z W, Yang F. Optimizing pollutant generation coefficients of livestock industry and mapping patterns of the pollutant constitution in China. Geographical Research, 2014; 33(4): 762–776. (in Chinese)
Fu Q, Wu G Y, Pan P, Wang W T. Analysis of livestock and poultry waste generation from 2000-2014 in Henan. J Agro-Environ Sci, 2017; 36(7): 1323–1329. (in Chinese)
Qu Q B, Yang P, Zhao R, Zhi S L, Zhai Z W, Ding F F, et al. Prediction of fecal nitrogen and phosphorus excretion for Chinese Holstein lactating dairy cows. J Anim Sci, 2017; 95(8): 3487–3496.
Wilkerson V A, Mertens D R, Casper D P. Prediction of excretion of manure and nitrogen by Holstein dairy cattle. J Dairy Sci, 1997; 80(12): 3193–3204.
Nennich T D, Harrison J H, Van Wieringen L M, Meyer D, Heinrichs A J, Weiss W P, et al. Prediction of manure and nutrient excretion from dairy cattle. J Dairy Sci, 2005; 88(10): 3721–3733.
Nennich T D, Harrison J H, Van Wieringen L M, St-Pierre N R, Kincaid R L, Wattiaux M A, Davidson D L, et al. Prediction and evaluation of urine and urinary nitrogen and mineral excretion from dairy cattle. J Dairy Sci, 2006; 89(1): 353–364.
Yan T, Frost J P, Agnew R E, Binnie R C, Mayne C S. Relationships among manure nitrogen output and dietary and animal factors in lactating dairy cows. J Dairy Sci, 2006; 89: 3981–3991.
Knowlton K F, Wilkerson V A, Casper D P, Mertens D R. Manure nutrient excretion by Jersey and Holstein cows. J Dairy Sci, 2010; 93(1): 407–412.
Higgs R J, Chase L E, Van Amburgh M E. Development and evaluation of equations in the Cornell Net Carbohydrate and Protein System to predict nitrogen excretion in lactating dairy cows. J Dairy Sci, 2012; 95(4): 2004–2014.
Jiao H P, Yan T, Mcdowell D A. Prediction of manure nitrogen and organic matter excretion for young Holstein cattle fed on grass silage-based diets. J Anim Sci, 2014; 92(7): 3042–3052.
Kebreab E, France J, Mills J A N, Allison R, Dijkstra J. A dynamic model of N metabolism in the lactating dairy cow and an assessment of impact of N excretion on the environment. J Anim Sci, 2002; 80(1): 248–259.
Dong R L, Zhao G Y, Chai L L, Beauchemin K A. Prediction of urinary and fecal nitrogen excretion by beef cattle. J Anim Sci, 2014; 92(10): 4669–4681.
[25] Dijkstra J, France J, Davies D R. Different mathematical approaches to estimating microbial protein supply in ruminants. J Dairy Sci, 1998; 81(12): 3370–3384.
Spek J W, Dijkstra J, Van Duinkerken G, Hendriks W H, Bannink A. Prediction of urinary nitrogen and urinary urea nitrogen excretion by lactating dairy cattle in northwestern Europe and North America: A meta-analysis. J Dairy Sci, 2013; 96(7): 4310–4322.
Schuba J, K H. Südekum, Pfeffer E, Jayanegara A. Excretion of faecal, urinary urea and urinary non-urea nitrogen by four ruminant species as influenced by dietary nitrogen intake: A meta-analysis. Livest Sci, 2017; 198: 82–88.
Yaslan Y, Bican B. Empirical mode decomposition based denoising method with support vector regression for time series prediction: A case study for electricity load forecasting. Meas, 2017; 103: 52–61.
Moghadam M P A, Pahlavani P, Bigdeli B. A new car-following model based on the epsilon-support vector regression method using the parameters tuning and data scaling techniques. Int J Civ Eng, 2017; 15(1): 1–14.
Yoo K H, Back J H, Na M G, Kim J H, Hur S, Kim C H. Prediction of golden time using SVR for recovering SIS under severe accidents. Ann Nucl Energy, 2016; 94: 102–108.
Das S P, Padhy S. A novel hybrid model using teaching-learning-based optimization and a support vector machine for commodity futures index forecasting. Int. J. Mach. Learn. Cybern., 2018; 9(1): 97–111.
Al-Anazi A F, Gates I D. Support vector regression to predict porosity and permeability: Effect of sample size. Comput. Geosci., 2012; 39: 64–76.
Tylutki T P, Fox D G, Durbal V M, Tedeschi L, Russell J B, Van Amburgh M, et al. Cornell net carbohydrate and protein system: A model for precision feeding of dairy cattle. Anim. Feed Sci. Technol., 2008; 143(1-4): 174–202.
Thiex N J. Journal of AOAC International. J. AOAC Int., 2009; 97(3): 643. doi: urn:issn:1060–3271.
Van Soest P J, Robertson J B, Lewis B A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci, 1991; 74(10): 3583–3597.
Licitra G, Hernandez T M, Van Soest P J. Standardization of procedures for nitrogen fraction on ruminant feeds. Anim Feed Sci Technol, 1996; 57(4): 347–358.
Krishnamoorthy U, Sniffen C J, Stern M D, Van Soest P J. Evaluation of a mathematical model of rumen digestion and an in vitro simulation of rumen proteolysis to estimate the rumen-undegraded nitrogen content of feedstuffs. Br J Nutr, 1983; 50(3): 555–568.
Karkalas J. An improved enzymic method for the determination of native and modified starch. J. Sci. Food Agric., 2010; 36(10): 1019–1027.
Sniffen C J, O'Connor J D, Van Soest P J, Fox D G, Russell J B. A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. J Anim Sci. 1992; 70(11): 3562–3577.
Xia K, Wang Z B, Xi W B, Yao Q, Li F G, Wang Y, et al. Effects of forage combinations on nutrient digestibility, utilization of energy and nitrogen of diets for dairy cows. Chin J Anim Nutr, 2012; 24(4): 681–688. (in Chinese)
Cortes C, Vapnik V. Support-vector networks. Mach. Learn., 1995; 20(3): 273–297.
Smola A, Schoelkopf B. A tutorial on support vector regression. Stat. & Comput., 2004; 14(3): 199–222.
Ma J, Theiler J, Perkins S. Accurate On-line Support Vector Regression. Neural Comput., 2003; 15(11): 2683–2703.
Vapnik V N. The nature of statistical learning theory. Springer, New York, 1995. doi: 10.1007/978-1-4757-2440-0.
Ghorbani M A, Zadeh H A, Isazadeh M, Terzi O. A comparative study of artificial neural network (MLP, RBF) and support vector machine models for river flow prediction. Environ. Earth Sci., 2016; 75(6): 476.
Copyright (c) 2020 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.