Photoreceptive reaction spectrum effect and phototactic activity intensity of locusts’ visual display characteristics stimulated by spectral light
Abstract
Keywords: Locusta migratoria manilensis, photoreceptive spectrum effect, visual reaction intensity, photosensitive activity effect, spectral illumination
DOI: 10.25165/j.ijabe.20211402.4758
Citation: Liu Q H, Jiang Y L, Miao J, Gong Z J, Li T, Duan Y, et al. Photoreceptive reaction spectrum effect and phototactic activity intensity of locusts’ visual display characteristics stimulated by spectral light. Int J Agric & Biol Eng, 2021; 14(2): 19–25.
Keywords
Full Text:
PDFReferences
Liu Q H, Zhou Q. The experimental study of light and temperature coupling on locusts phototactic gain effect. Transactions of the CSAE, 2011; 27(6): 110–116. (in Chinese)
Liu Q H, Zhou Q. Comparative investigation of locusts visual bio-selection response effect induced by incentive effect of polarized light and spectral light. Transactions of the CSAM, 2016; 47(4): 233–238. (in Chinese)
Vishnevskaya T M, Cherkasov A D, Shura-Bura T M. Spectral sensitivity of photoreceptors in the compound eye of the locust. The Journal of Comparative Neurology, 1983; 33 (2): 9–12.
Jiang J L. Spectral sensitivity of locust compound eyes: A comparative study. Acta Physiologica Sinica, 1983; 35(1): 5–9.
Osorio B Y D. Ultraviolet sensitivity and spectral opponency in the locust. Journal of Experimental Biology, 1986; 122(5): 193–208.
Wu W G, Horridge C A. Regular change of the angular sensitivity of the retinula cells in locust compound eye. Acta Biophysica Sinica, 1987; 3(6): 178–184.
Zhang L, Lecoq M, Latchininsky A, Hunter D. Locust and grasshopper management. Annu. Rev. Entomol., 2019; 64: 15–34.
Varga A G, Ritzmann R R. Cellular basis of head direction and contextual cues in the insect brain. Curr. Biol. 2016; 26: 1816–1828.
Kostarakos K, Hedwig B. Surface electrodes record and label brain neurons in insects. J Neurophysiol, 2017; 1152(10): 490–506.
Barry C K, Jander R. Photoinhibitory function of the dorsal ocelli in the phototactic reaction of the migratory locust locusta migratoria L. Nature, 1968; 217(5129): 675–677.
Benjamin K, Carl A W. Spots and stripes: the evolution of repetition in visual signal form. Journal of Theoretical Biology, 2004; 230(4): 407–419.
William T C. The effect of target orientation on the visual acuity and the spatial frequency response of the locust eye. Journal of Insect Physiology, 1999; 45(9): 191–200.
Liu Q H, Zhou Q. Influence of trapping light source's illuminance gradient on locusts' phototactic effect. Transactions of the CSAM, 2011; 42(10): 105-109. (in Chinese)
Liu Q H, Zhou Q. Comparison of locust’s phototactic response to polarized blue light and unpolarized light. Transactions of the CSAM, 2011; 42(12): 116-120. (in Chinese)
Liu Q H, Zhou Q. Physiological response of locusts to eye stimulation by spectral illumination for phototactic pest control. Int J Agric & Biol Eng, 2016; 9(2): 186-194.
Kim K N, Huang Q Y, Lei C L. Advances in insect phototaxis and application to pest management: A review. Pest. Manag. Sci., 2019; 7(28): 118–126.
Motohiro W, Finlay S, Yukiko M, Shigeru M, Kentaro A. Physiological basis of phototaxis to near‑infrared light in Nephotettix cincticeps. J Comp Physiol A, 2014; 200(13): 527–536.
Rind F C, Wernitznig S, Pölt P, Zankel A, Gütl D, Sztarker J. Two identified looming detectors in the locust: ubiquitous lateral connections among their inputs contribute to selective responses to looming objects. Sci Rep, 2016; 6: 35525. doi: 10.1038/srep35525.
Liu Q H, Zhou Q. Influence of locusts visual reaction effect stimulated by orange light on response effect. Journal of Biobased Materials and Bioenergy, 2017; 11(4): 274–280.
Rosner R, Homberg U. Widespread sensitivity to looming stimuli and small moving objects in the central complex of an insect brain. J Neurosci, 2013; 33(19): 8122–8133.
Liu Y M, Yang J W, Fan C B, Shang S Q, Bryony T, Li H M. Research on environmental factors regulating body temperature of oriental migratory locust Locusta migratoria manilensis. Journal of Plant Protection, 2018; 45(6):1296–1301. (in Chinese)
Liu Q H, Jiang Y L, Miao J, Duan Y, Li T, Wu Y Q. Visual response effects of western flower thrips manipulated by different light spectra. Int J Agric Biol Eng, 2019; 12(5): 106–114.
Jander R, Barry C K. The phototactic push-pull-coupling between dorsal ocelli and compound eyes in the phototropotaxis of locusts and crickets. Zeitschrift für Vergleichende Physiologie, 1968; 57(4): 432–458.
Liu Q H, Xin Z, Zhou Q. Visual reaction effects induced and stimulated by different lights on phototactic bio-behaviors in Locusta migratoria manilensis. Int J Agric & Biol Eng, 2017; 10(4): 173–181.
Gray J R, Blincow E, Robertson R M. A pair of motion-sensitive neurons in the locust encode approaches of a looming object. J Comp Physiol A, 2010; 196: 927–938.
Julia C, Agustín Y, Damian O. Characterization and modelling of looming-sensitive neurons in the crab Neohelice. Journal of Comparative Physiology A, 2018; 204: 487–503.
Marko I, Andrej M, Marko K, Gregor B. The fly sensitizing pigment enhances UV spectral sensitivity while preventing polarization-induced artifacts. Front. Cell. Neurosci., 2018; 12: 34–39.
French A S, Immonen E V, Frolov R V. Static and dynamic adaptation of insect photoreceptor responses to naturalistic stimuli. Front. Physiol., 2016; 7: 477–486.
Dirk S, Rachel K, Dave C, Frank F J, Kevin J G. Low levels of artificial light at night strengthen top-down control in insect food web. Current Biology, 2018; 28: 2474–2478.
Copyright (c) 2021 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.