Segmentation of thermal infrared images of cucumber leaves using K-means clustering for estimating leaf wetness duration
Abstract
Keywords: thermal imaging, K-means clustering algorithm, leaf wetness duration, cucumber
DOI: 10.25165/j.ijabe.20201303.4301
Citation: Wen D M, Ren A X, Ji T, Flores-Parra I M, Yang X T, Li M. Segmentation of thermal infrared images of cucumber leaves using K-means clustering for estimating leaf wetness duration. Int J Agric & Biol Eng, 2020; 13(3): 161–167.
Keywords
Full Text:
PDFReferences
Mashonjowa E, Ronsse F, Mubvuma M, Milford J R, Pieters J G. Estimation of leaf wetness duration for greenhouse roses using a dynamic greenhouse climate model in Zimbabwe. Computers and Electronics in Agriculture, 2013; 95(1): 70–81.
Huber L, Gillespie T J. Modeling leaf wetness in relation to plant disease epidemiology. Annual Review of Phytopathology, 1992; 30(1): 553-577.
Armstrong R, Barthakur N N, Norris E. A comparative study of three leaf wetness sensors. International Journal of Biometeorology, 1993; 37(1): 7–10.
Li M, Zhao C J, Li D L, Wang C, Yang X T. Calibration method of leaf wetness sensor for cucumber in solar greenhouse. Transactions of the Chinese Society of Agricultural Engineering, 2010; 26(2): 224–230.
Bassimba D D M, Intrigliolo D S, Marta A D, Orlandini S, Vicent A. Leaf wetness duration in irrigated citrus orchards in the Mediterranean climate conditions. Agricultural and Forest Meteorology, 2017; 234: 182–195.
Hughes R N, Brimblecombe P. Dew and guttation: formation and environmental significance. Agricultural and Forest Meteorology, 1994; 67(94): 173–190.
Pedro Jr M J, Gillespie T J. Estimating dew duration. I. utilizing micrometeorological data. Agricultural Meteorology, 1981; 25(81): 283–296.
Couture L, Sutton J C. Relation of weather variables and host factors to incidence of airborn. Canadian Journal of Botany, 1978; 56(20): 2460–2469.
Neufeld K N, Ojiambo P S. Interactive effects of temperature and leaf wetness duration on sporangia germination and infection of cucurbit hosts by Pseudoperonospora cubensis. Plant Disease, 2012; 96(3): 345–353.
Magarey R D , Sutton T B , Thayer C L . A simple generic infection model for foliar fungal plant pathogens. Phytopathology, 2005; 95(1): 92–100.
De Wolf E D, Isard S A. Disease cycle approach to plant disease prediction. Annual Review of Phytopathology, 2007; 45(45): 203–220.
Marta D A, Magarey R D, Orlandini S. Modelling leaf wetness duration and downy mildew simulation on grapevine in Italy. Agricultural and
Forest Meteorology, 2005; 132(1): 84–95.
Fall M L, Vander Heyden H, Beaulieu C, Carisse O. Bremia lactucae infection efficiency in lettuce is modulated by temperature and leaf wetness duration under Quebec field conditions. Plant Disease, 2015; 99(7): 1010–1019.
Burkhardt J, Flechard C R, Gresens F, Mattsson M, Jongejan P A C, Erisman J W, et al. Modelling the dynamic chemical interactions of atmospheric ammonia with leaf surface wetness in a managed grassland canopy. Biogeosciences, 2017; 6(1): 67–84.
Lenthe J H, Oerke E C, Dehne H W. Digital infrared thermography for monitoring canopy health of wheat. Precision Agriculture, 2007; 8(1): 15–26.
Zhao C J, Li M, Yang X T, Sun C H, Qian J P, Ji Z T. A data-driven model simulating primary infection probabilities of cucumber downy mildew for use in early warning systems in solar greenhouses. Computers and Electronics in Agriculture, 2011; 76(2): 306–315.
Magarey R D, Seem R C, Russo J M. Grape canopy surface wetness: Simulation versus visualization and measurement. Agricultural Forest Meteorology, 2006; 139(3): 361–372.
Amir F. Leaf wetness duration modelling using adaptive neuro fuzzy inference system. Master disertation, Auckland: Auckland Univercity of Technology, 2016, 2. 8p.
Rowlandson T, Gleason M, Sentelhas P, Gillespie T, Thomas C, Hornbuckle B. Reconsidering leaf wetness duration determination for plant disease management. Plant Disease, 2015; 99(3): 310–319.
Sentelhas P C, Marta A D, Orlandini S, Santos E A, Gillespie T J, Gleason M L. Suitability of relative humidity as an estimator of leaf wetness duration. Agricultural and Forest Meteorology, 2008; 148(3): 392–400.
Zia S, Sophrer K, Du WY, Spreer W, Romano G, He XK, et al. Monitoring physiological responses to water stress in two maize varieties by infrared thermography. International Journal of Agricultural and Biological Engineering, 2011; 4(3): 7–15.
Marta A D, Magarey R D, Martinelli L, Orlandini S. Leaf wetness duration in sunflower (Helianthus annuus): Analysis of observations, measurements and simulations. European Journal of Agronomy, 2007; 26(3): 310–316.
Forster W A, Gaskin R E, Strand T M, Manktelow D W L, Leeuwen R M V, Zydenbos S M. Effect of target wettability on spray droplet adhesion, retention, spreading and coverage: artificial collectors versus plant surfaces. New Zealand Plant Protection, 2014; 67: 284–291.
Roten R L, Connell R J, Hewitt A J, Woodward S J R, Zydenbos S M. Comparison of spray dose measured on leaf surfaces with spray coverage estimated from Kromekote® paper. New Zealand Plant Protection, 2015; 68: 38–43.
Derksen R C, Jiang C. Automated detection of fluorescent spray deposits with a computer vision system. Transactions of the ASABE, 1995; 38(6): 1647–1653.
Ramalingam N, Ling P P, Derksen R C. Background reflectance compensation and its effect on multispectral leaf surface moisture assessment. Transactions of the ASABE, 2005; 48(1): 375–383.
Bezdek, James C. Pattern Recognition with Fuzzy Objective Function Algorithms. Advanced Applications in Pattern Recognition, 1981: 22(1171): 203–239.
Mohd M R S, Herman S H, Sharif Z. Application of K-Means clustering in hot spot detection for thermal infrared images. In: 2017 IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE). Lankawi: IEEE, 2017; pp.107–110
Etehadtavakol M, Sadri S, Ng E Y K. Application of K- and Fuzzy c-Means for Color Segmentation of Thermal Infrared Breast Images. Journal of Medical Systems, 2010; 34(1): 35–42.
Yang X T, Sun W J, Li M, Chen M X, Ming N. Water droplest fluorescence image segmentation of cucumber leaves based on K-means clustering with opening and closing alternately filtering. Transactions of the Chinese Society of Agricultural Engineering, 2016; 32(17): 136–143.
Zia S, Spohrer K, Merkt N, Du WY, He XK. Non-invasive water status detection in grapevine (Vitis vinifera L.) by thermography. International Journal of Agricultural and Biological Engineering, 2009; 2(4): 1616–1623.
Fito P J, Ortolá M D, Reyes D R, Fito P, Reyes D R. Control of citrus surface drying by image analysis of infrared thermography. Journal of Food Engineering, 2004; 61(3): 287–290.
Hernández-Hernández J L, García-Mateos G, González-Esquiva J M, Escarabajal-Henarejos D, Ruiz-Canales A, Molina-Martínez J M. Optimal color space selection method for plant/soil segmentation in agriculture. Computers and Electronics in Agriculture, 2016; 122: 124–132.
León K, Mery D, Pedreschi F, Leon J. Color measurement in L*a*b* units from RGB digital images. Food Research International, 2006; 39(10): 1084–1091.
Wang X, Hänsch R, Ma L Z, Hellwich O. Comparison of different color spaces for image segmentation using graph-cut. International Conference on Computer Vision Theory and Applications, 2014; 57(4): 301–308.
Li H, He H, Wen Y. Dynamic particle swarm optimization and K-means clustering algorithm for image segmentation. Optik International Journal for Light and Electron Optics, 2015; 126(24): 4817–4822.
Li M, Zhao C J, Qiao S, Qian J P, Yang X T. Estimation model of leaf wetness duration based on canopy relative humidity for cucumbers in solar greenhouse. Transactions of the Chinese Society of Agricultural
Engineering, 2010; 26(9): 286–291.
Kümmerlen B, Dauwe S, Schmund D, Schurr U, Jähne B, Geißler P, et al. Thermography to measure water relations of plant leaves. Handbook of Computer Vision and Applications. Academic Press. 3: Systems and Applications 1999; pp.763-781
Stoll M, Jones H. Thermal imaging as a viable tool for monitoring plant stress. International Journal of Vine and Wine Sciences, 2007; 41(2): 77–84.
Fuchs M. Infrared measurement of canopy temperature and detection of plant water stress. Theoretical and Applied Climatology, 1990; 42(4): 253–261.
Jackman P, Sun D W, Allen P. Automatic segmentation of beef longissimus dorsi muscle and marbling by an adaptable algorithm. Meat Science, 2009; 83(2): 187–194.
Copyright (c) 2020
This work is licensed under a Creative Commons Attribution 4.0 International License.