Effects of strain, nutrients concentration and inoculum size on microalgae culture for bioenergy from post hydrothermal liquefaction wastewater
Abstract
Keywords: post hydrothermal liquefaction wastewater, microalgae strain screening, inoculum size, initial nutrient concentration, nutrient recovery, biomass production
DOI: 10.3965/j.ijabe.20171002.2882
Citation: Zhang L, Lu H F, Y H Zhang, Ma S S, Li B M, Liu Z D, et al. Effects of strain, nutrients concentration and inoculum size on microalgae culture for bioenergy from post hydrothermal liquefaction wastewater. Int J Agric & Biol Eng, 2017; 10(2): 194–204.
Keywords
Full Text:
PDFReferences
Yu G, Zhang Y H, Schideman L, Funk T, Wang Z C. Distributions of carbon and nitrogen in the products from hydrothermal liquefaction of low-lipid microalgae. Energ Environ Sci, 2011; 4(11): 4587–4595.
Tian C Y, Li B M, Liu Z D, Zhang Y H, Lu H F. Hydrothermal liquefaction for algal biorefinery: Acirical Review. Renew Sust Energ Rev, 2014; 38: 933–950.
Chen W T, Zhang Y H, Zhang J X, Zhang P, Schideman L, Minarick M. Hydrothermal liquefaction of mixed-culture algal biomass from wastewater treatment system into bio-crude oil. Bioresour Technol, 2014; 152: 130–139.
Chen W T, Zhang Y H, Zhang J X, Schideman L, Yu G, Zhang P, et al. Co-liquefaction of swine manure and mixed-culture algal biomass from a wastewater treatment system to produce bio-crude oil. Appl Energ, 2014; 128: 209–216.
Zhou Y, Schideman L, Yu G, Zhang Y H. A synergistic combination of algal wastewater treatment and biofuel production maximized by nutrient and carbon recycling. Energ Environ Sci, 2013; 6: 3765–3779.
Alba L G, Torri C, Fabbri D, Kersten S R A, Brilman D W F. Microalgae growth on the aqueous phase from hydrothermal liquefaction of the same microalgae. Chem Eng J, 2013; 228: 214–223.
Selvaratnam T, Pegallapati A K, Reddy H K, Kanapathipillai N, Nirmalakhandan N, Deng S, et al. Algal biofuels from urban wastewaters: Maximizing biomass yield using nutrients recycled from hydrothermal processing of biomass. Bioresour Technol, 2015; 232–238.
Biller P, Ross A B, Skill S C, Lea-Langton A, Balasundaram B, Hall C, et al. Nutrient recycling of aqueous phase for microalgae cultivation from the hydrothermal liquefaction process. Algal Res, 2012; 1: 70–76.
Jena U, Vaidyanathan N, Chinnasamy S, Das K C. Evaluation of microalgae cultivation using recovered aqueous co-product from thermo chemical liquefaction of algal biomass. Bioresour Technol, 2012; 102: 3380–3387.
Pham M, Schideman L, Scott J, Rajagopalan N, Plewa M J. Chemical and biological characterization of wastewater generated from hydrothermal liquefaction of Spirulina. Environ Sci Technol, 2012; 47(4): 2131–2138.
Zhou Y, Schideman L, Zhang Y H, Yu G, Wang Z C, Pham M. Resolving bottlenecks in current algal wastewater treatment paradigms: A synergistic combination of low-lipid algal wastewater treatment and hydrothermal liquefaction for large-scale biofuel production. Energ Water, 2011; 347–361.
Tommaso G, Chen W T, Li P, Schideman L, Zhang Y H. Chemical characterization and anaerobic biodegradability of hydrothermal liquefaction aqueous products from mixed-culture wastewater algae. Bioresour Technol, 2015; 178: 139–146.
Doucha J, Lívanský K. Production of high-density Chlorella culture grown in fermenters. J Appl Phycol, 2011; 24: 35–43.
Hu B, Min M, Zhou W G, Du Z Y, Mohr M, Chen P, et al. Enhanced mixotrophic growth of microalga Chlorella sp. on pretreated swine manure for simultaneous biofuel feedstock production and nutrient removal. Bioresour Technol, 2012; 126: 71–79.
Wang H, Xiong H, Hui Z, ZengX. Mixotrophic Cultivation of Chlorella pyrenoidosa with diluted primary piggery wastewater to produce lipids. Bioresour Technol, 2012; 104: 215–220.
Yang F F, He S B, Li M F, Dai D L, Chen X C. Mixotrophic capability and its effect on the growth of Micocystic aeruginosa. J Agro-Environ Sci, 2012; 31: 1003–1008.
Girard J M, Roy M L, Hafsa M B, Gagnon J, Faucheux N, Heitza M, et al. Mixotrophic cultivation of green microalgae Scenedesmus obliquus on cheese whey permeate for biodiesel production. Algal Res, 2014; 5: 241–248.
Muñoz R, Köllner C, Guieysse B, Mattiasson B. Salicylate biodegradation by various algal-bacterial consortia under photosynthetic oxygenation. Biotechnol Lett, 2003; 25(22): 1905–1911.
Tan X, Kong F X, Zeng Q F, Cao H S, Qian S Q, Zhang M. Seasonal variation of Microcystis in Lake Taihu and its relationships with environmental factors. J Environ Sci, 2009; 21: 892–899.
Si Y B, Yue Y D, Wu Z P, Wang R Y, Deng D P. Bioaccumulation and biodegration of phenol by the algae Microcystis aeruginosakutz. J Anhui Agri University, 2000; 27(3): 269–271.
Gao Y J, Zhou P J, Shen H, Zhou X, Song L R, Shen Y W, et al. Study on biological effects of amphetamine on growth of Microcystis. Environ Sci Technol, 2004; 27(6): 1, 2, 57. (in Chinese)
Lou C, Huang S Q, Xu C. Study of the removal of environmental endocrine disruptor 17 β-estradiol by Microcystis aeruginosa. J Zhejiang University Technol, 2012; 40(1): 25–29.
Richmond A. Biological principals of mass cultivation. In: Richmond A, editor. Handbook of microalgal culture: biotechnology and applied phycology. Ames: Iowa State Press, a Blackwell Publishing Company, 2004. pp. 125–177.
Markou G, Vandamme D, Muylaert K. Ammonia inhibition on Arthro spiraplatensis in relation to the initial biomass density and pH. Bioresour Technol, 2014; 166: 259–265.
Li H, Liu Z D, Zhang Y H, Li B M, Lu H F, Duan N. Conversion efficiency and oil quality of low-lipid high-protein and high-lipid low-protein microalgae via hydrothermal liquefaction. Bioresour Technol, 2014; 154: 322–329.
APHA. American Public Health Association, standard methods for examination of water and wastewater, 21st ed. Washington DC, 2005.
Zhang L, Lu H F, Zhang Y H, Li B M, Liu Z D, Duan N. Nutrient recovery and biomass production by cultivating Chlorella vulgaris 1067 from four Types of post-hydrothermal liquefaction wastewater. J Appl Phycol, 2015.
Lee Y K, Shen H. Basic culturing techniques. In: Richmond A, editor. Handbook of microalgal culture: biotechnology and applied phycology. Ames: Iowa State Press, a Blackwell Publishing Company, 2004; pp. 40–56.
Lineweaver H and Burk D. The determination of enzyme dissociation constants. J Am Chem Soc, 1934; 56: 658–666.
Lai L W, Teo C L, Wahidin S, Annuar M S M. Determination of enzyme kinetic parameters on sago starch hydrolysis by linezrized graphical methods. Malays J Anal Sci, 2014; 18: 527–533.
Qu C B, Wu Z Y, Shi X M. Phosphate assimilation by Chlorella and adjustment of phosphate concentration in basal medium for its Cultivation. Biotechnol Lett, 2008; 30: 1735–1740.
Lee Y K. Basic culturing techniques. In: Richmond A, editor. Handbook of microalgal culture: biotechnology and applied phycology. Ames: Iowa State Press, a Blackwell Publishing Company. 2004. pp 116–124.
Biller P, Ross A B. Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content. Bioresour Technol, 2011; 102: 215–225.
Shi X M, Zhang X W, Chen F. Heterotrophic production of biomass and lutein by Chlorella protothecoides on various nitrogen sources. Enzyme Microb Technol, 2000; 27: 312–318.
Zheng X Y, Yan J, Yu X R, Gu Y J, Zhu Y Q, Yang Y F. Influence of nitrogen and phosphorus concentrations on the growth characteristics of Microcystisaeruginosa. J East China Normal University (Natural Science), 2012; 1: 12–18.
Wang J H, Yang H Z, Wang F. Mixotrophic cultivation of microalgae for biodiesel production: Status and prospects. Appl Biochem Biotechnol, 2014; 172: 3307–3329.
Scragg A H. The effect of phenol on the growth of Chlorella vulgaris and Chlorella VT-1. Enzyme Microb Technol, 2006; 39: 796–799.
Franklin N M, Stauber J L, Apte S C, Lim R P. Effect of initial cell density on the bioavailability and toxicity of copper in microalgal biomassays. Environ Toxicol Chem, 2002; 21(4): 742–751.
Harker M, Tsavalos A J, Young A J. Autotrophic growth and carotenoid production of Haematococcuspluvialis in a 30 liter air-lift photobioreactor. J Ferment Bioeng, 1996; 82: 113–118.
Hu Z Y, Li Y T, Sommerfeld M, Chen F, Hu Q. Enhanced protection against oxidative stress in an astaxanthin-over production Haematococcus mutant. Eur J Phycol, 2008; 43: 365–376.
Wang J F, Han D X, Sommerfeld M R, Lu C M, Hu Q. Effect of initial biomass density on growth and astaxanthin production of Haematococcus pluvialis in an outdoor photobioreactor. J Appl Phycol, 2013; 25: 253–260.
Copyright (c)