DR-XGBoost: An XGBoost model for field-road segmentation based on dual feature extraction and recursive feature elimination
Abstract
Keywords: trajectory segmentation, feature extraction, recursive feature elimination, time window, XGBoost
DOI: 10.25165/j.ijabe.20231603.8187
Citation: Xiao Y Z, Mo G Z, Xiong X Y, Pan J W, Hu B B, Wu C C, et al. DR-XGBoost: An XGBoost model for field-road segmentation based on dual feature extraction and recursive feature elimination. Int J Agric & Biol Eng, 2023; 2023; 16(3): 169–179.
Keywords
Full Text:
PDFReferences
Bochtis D D, Sørensen C G, Busato P. Advances in agricultural machinery management: A review. Biosystems Engineering., 2014; 126: 69-81.
Molari G, Mattetti M, Lenzini N, Fiorati S. An updated methodology to analyse the idling of agricultural tractors. Biosystems Engineering, 2019; 187: 160-170.
Pagare V, Nandi S, Khare D. Appraisal of optimum economic life for farm tractor: A case study. Economic Affairs, 2019; 64(1): 117-124.
Sopegno A, Calvo A, Berruto R, Busato P, Bocthis D. A web mobile application for agricultural machinery cost analysis. Computers and Electronics in Agriculture, 2016; 130: 158-168.
Damanauskas V, Janulevicius A, Pupinis G. Influence of extra weight and tire pressure on fuel consumption at normal tractor slippage. Journal of Agricultural Science, 2015; 7(2): 55-67.
Keller T, Lamandé M, Peth S, Berli M, Delenne J Y, Baumgarten W, et al. An interdisciplinary approach towards improved understanding of soil deformation during compaction. Soil and Tillage Research, 2013; 128: 61-80.
Zhang F Z, Liu R H, Ni Y D, Wang Y. Dynamic positioning accuracy test and analysis of BeiDou Satellite Navigation System. GNSS World of China, 2018; 3(1): 43-48.
Wu C C, Li D, Zhang X Q, Pan J W, Quan L, Yang L L, et al. China’s agricultural machinery operation big data system. Computers and Electronics in Agriculture, 2023; 205: 107594. doi: 10.1016/j.compag.2022.107594.
Bochtis D D, Sørensen C G, Green O, Moshou D, Olesen J. Effect of controlled traffic on field efficiency. Biosystems Engineering, 2010; 106(1): 14-25.
Grisso R D, Kocher M F, Adamchuk V I, Jasa P J, Schroeder M A. Field efficiency determination using traffic pattern indices. Applied Engineering in Agriculture. 2004; 20(5): 563-572.
Stein T, Meyer H J. Automatic machine and implement identification of an agri-cultural process using machine learning to optimize farm management information systems. In: 6th International Conference on Machine Control and Guidance, 2018; pp.19-26.
Kortenbruck D, Griepentrog H W, Paraforos DS. Machine operation profiles generated from ISO 11783 communication data. Computers and Electronics in Agriculture, 2017; 140: 227-236.
Kilic T, Zezza A, Carletto C, Savastano S. Missing (ness) in action: selectivity bias in GPS-based land area measurements. World Development, 2017; 92: 143-157.
Rydberg A, Borgefors G. Integrated method for boundary delineation of agricultural fields in multispectral satellite images. IEEE Transactions on Geoscience and Remote Sensing. 2001; 39(11): 2514-2520.
Yan L, Roy D P. Automated crop field extraction from multi-temporal Web Enabled Landsat Data. Remote Sensing of Environment, 2014; 144: 42-64.
Chen Y, Zhang X Q, Wu C C, Li G Y. Field-road trajectory segmentation for agricultural machinery based on direction distribution. Computers and Electronics in Agriculture. 2021;186:106180.
Poteko J, Eder D, Noack PO. Identifying operation modes of agricultural vehicles based on GNSS measurements. Computers and Electronics in Agriculture, 2021; 185: 106105. doi: 10.1016/j.compag.2021.106180.
Schapire R E. The strength of weak learnability. In: 30th Annual Symposium on Foundations of Computer Science, Research Triangle Park, 1989; pp.28-33.
Valiant L G. A theory of the learnable. Communications of the ACM, 1984; 27(11): 1134-1142.
Chen Y, Li G Y, Zhang X Q, Jia J P, Zhou K, Wu C C. Identifying field and road modes of agricultural Machinery based on GNSS Recordings: A graph convolutional neural network approach. Computers and Electronics in Agriculture, 2022; 198: 107082. doi: 10.1016/j.compag.2022.107082.
Feng Z N, Zhu Y M. A survey on trajectory data mining: Techniques and applications. IEEE Access, 2016; 4: 2056-2067.
Lee J G, Han J, Li X, Gonzalez H. TraClass: Trajectory classification using hierarchical region-based and trajectory-based clustering. Proceedings of the VLDB Endowment, 2008; 1(1): 1081-1094.
Mazimpaka J D, Timpf S. Trajectory data mining: A review of methods and applications. Journal of Spatial Information Science, 2016; 13: 61-99.
Wang D, Miwa T, Morikawa T. Big trajectory data mining: A survey of methods, applications, and services. Sensors, 2020; 20(16): 4571. doi: 10.3390/s20164571.
Wang S, Bao Z F, Culpepper J S, Cong G. A survey on trajectory data management, analytics, and learning. ACM Computing Surveys, 2021; 54(2): 39. doi: 10.1145/3440207.
Zheng Y. Trajectory data mining: An overview. ACM Transactions on Intelligent Systems and Technology (TIST), 2015; 6(3): 29. doi: 10.1145/2743025.
Guyon I, Weston J, Barnhill S, Vapnik V. Gene selection for cancer classification using Support Vector Machines, Machine Learning, 2002; 46: 389-422.
Chen T Q, Guestrin C. XGBoost: A scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 2016; pp.785-794.
Duan K B, Rajapakse J C, Wang H Y, Azuaje F. Multiple SVM-RFE for gene selection in cancer classification with expression data. IEEE Transactions on NanoBioscience, 2005; 4(3): 228-234.
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine learning in Python. The Journal of Machine Learning Research, 2011; 12: 2825-2830.
Stone M. Cross-validation: A review. Series Statistics, 1978; 9(1): 127-139.
Westerhuis J A, Hoefsloot H C, Smit S, Vis D J, Smilde A K, van Velzen E J, et al. Assessment of PLSDA cross validation. Metabolomics, 2008; 4: 81-89.
Neunhoeffer M, Sternberg S. How cross-validation can go wrong and what to do about it. Political Analysis, 2019; 27(1): 101-106.
Tharwat A. Classification assessment methods. Applied Computing and Informatics, 2021; 17(1): 168-192.
Dabiri S, Markovic N, Heaslip K, Reddy C K. Á deep convolutional neural network based approach for vehicle classification using large-scale GPS trajectory data. Transportation Research Part C: Emerging Technologies, 2020; 116: 102644. doi: 10.1016/j.trc.2020.102644.
Copyright (c) 2023 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.