Liberica coffee as an alternative cropping system for sustainable farming on Indonesian Peatlands
Abstract
Keywords: degraded peat, amendments, water table, cultivation system, liberica coffee, alternative cropping system, sustainable farming, Indonesian Peatlands
DOI: 10.25165/j.ijabe.20241701.7896
Citation: Hafif B, Ferry Y, Martono B, Harni R, Sasmita K D, Saidi B B, et al. Liberica coffee as an alternative cropping system for sustainable farming on Indonesian Peatlands. Int J Agric & Biol Eng, 2024; 17(1): 180-188.
Keywords
Full Text:
PDFReferences
Minsyah N I. Agro-economic performance of composite tungkal liberica coffee on peatlands in Tanjung Jabung Barat Regency. In: Membangun Pertanian Modern dan Inovatif Berkelanjutan dalam Rangka Mendukung MEA. 2016; pp.958–966. Available:http://repository.pertanian.go.id/handle/123456789/6828. Accessed on [2021-04-25].
Gibson M, Newsham P. Tea and coffee. In: Gibson M, Newsham P., editor. Food Science and the Culinary Arts [Internet]. Amsterdam: Elsevier 2018; pp.353–372. Available:https://www.sciencedirect.com/science/article/pii/B978012811816000018X. Accessed on [2021-04-20].
Hulupi R. Libtukom: recommended liberica coffee varieties for peatlands. 2014. Available:https://warta.iccri.net/wp-content/uploads/2019/10/Warta261.pdf. Accessed on [2022-03-06].
Jasnari J, Sofiyuddin M. Excelsa coffee: the exoticism of agroforestry in peatlands. 2013. Available: http://www.worldagroforestry.org/sea/Publications/files/magazine/MA0100-14.pdf. Accessed on [2021-04-25].
Anda M, Ritung S, Suryani E, Sukarman, Hikmat M, Yatno E, et al. Revisiting tropical peatlands in Indonesia: Semi-detailed mapping, extent and depth distribution assessment. Geoderma, 2021; 402: 115235.
Page S E, Banks C J, Rieley J O, Wüst R. Extent, significance and vulnerability of the tropical peatland carbon pool: past, present and future prospects. Tropical Peatlands, 2006; pp.233–236. Available: https://peatlands.org/assets/uploads/2019/06/ipc2008p233-236-page-extent-significance-and-vulnerability-of-the-tropical-peatland-carbon-pool.pdf. Accessed on [2022-04-14].
Gaveau D L A, Epting J, Lyne O D, Linkie M, Kumara I, Kanninen M, et al. Evaluating whether protected areas reduce tropical deforestation in Sumatra. J Biogeogr, 2009; 36(11): 2165–2175.
Martono B, Sudjarmoko B, Udarno L. The potential of liberoid coffee cultivation on the peatlands (a case study: The peatlands in the Meranti island, Riau). IOP Conf Ser Earth Environ Sci, 2020; 418: 012022.
Hafif B, Sasmita K D. The organic carbon dynamics of peat soil under liberica coffee cultivation. IOP Conf Ser Earth Environ Sci, 2020; 418(1): 012021.
BPS. Tanjung jabung barat regency in figures. 2021. Available: https://tanjabbarkab.bps.go.id/publication/2021/02/26/2710822d3601a2f696fc16a0/kabupaten-tanjung-jabung-barat-dalam-angka-2021.html. Accessed on [2022-02-08].
Mulia R, Widayati A, Suyanto, Agung P, Zulkarnain M T. Low carbon emission development strategies for Jambi, Indonesia: Simulation and trade-off analysis using the FALLOW model. Mitig Adapt Strateg Glob Chang, 2014; 19(6): 773–788.
Sabiham S, Sukarman. Peatland cultivation for palm oil development in Indonesia. Sumberdaya Lahan. 2012; 6(2): 55–66. Available:https://repository.pertanian.go.id/server/api/core/bitstreams/d563f4cb-d2a9-4c04-856b-40351912a480/content. Accessed on [2022-05-28].
Wahyunto, Dariah A. Land degradation in Indonesia: existing conditions, characteristics, and uniform definitions in supporting the movement towards one map. 2014. Sumberdaya Lahan. 8(2): 81–93. Available:https://media.neliti.com/media/publications/132467-ID-degradasi-lahan-di-indonesia-kondisi-exi.pdf. Accessed on [2022-05-28].
Page S, Mishra S, Agus F, Anshari G, Dargie G, Evers S, et al. Anthropogenic impacts on lowland tropical peatland biogeochemistry. Nat Rev Earth Environ, 2022; 3: 426–443.
Elz I, Tansey K, Page S E, Trivedi M. Modelling deforestation and land cover transitions of tropical peatlands in Sumatra, Indonesia using remote sensed land cover data sets. Land, 2015; 4(3): 670–687.
Agus C, Ilfana Z R, Azmi F F, Rachmanadi D, Widiyatno, Wulandari D, et al. The effect of tropical peat land-use changes on plant diversity and soil properties. Int J Environ Sci Technol, 2020; 17(3): 1703–1712.
Andriesse J P. Nature and Management of Tropical Peat Soils. Rome: FAO Land and Water Development Division. 1988. 5–9 p. Available:https://www.fao.org/3/x5872e/x5872e00.htm. Accessed on [2022-05-28].
Erkens G, Van Der Meulen M J, Middelkoop H. Double trouble: Subsidence and CO2 respiration due to 1, 000 years of Dutch coastal peatlands cultivation. Hydrogeol J. 2016; 24(3): 551–568.
Kløve B, Sveistrup TE, Hauge A. Leaching of nutrients and emission of greenhouse gases from peatland cultivation at Bodin, Northern Norway. Geoderma, 2010; 154(3–4): 219–232.
Dinas Pekerjaan Umum Tanjung Jabung Barat. Final report of the medium term investment program of Tanjung Jabung Barat Distric. 2017. 29p. Available:https://docplayer.info/203185067-Laporan-akhir-bab-2-gambaran-umum-kondisi-wilayah-kabupaten-tanjung-jabung-barat.html. Accessed on [2022-05-28].
Badan Restorasi Gambut Provinsi Jambi. Peat care village in Jambi Province 2017. Available:https://www.scribd.com/document/437288438/FINAL-PROFIL-DESA-MEKAR-JAYA-pdf. Accessed on [2022-05-28].
Post. com A. WKS canal causes betara residents' plantations to flood _ Aksipost. 2017. Available:https://www.aksipost.com/arsip/10990/kanal-wks-sebabkan-kebun-warga-betara-banjir/. Accessed on [2021-09-17].
Stanley D C. Alaska Guide to Description and Classification of Peat and Organic Soil. 2007. 4 p. Available: https://dot.alaska.gov/stwddes/desmaterials/assets/pdf/geo_man/peat_organicsoil.pdf. Accessed on [2022-05-28].
Agus F, Hairiah K, Mulyani A. Practical instructions for measuring peat soil carbon stocks. World Agroforestry Centre-ICRAF, SEA Regional Office dan Balai Besar Penelitian dan Pengembangan Sumberdaya Lahan Pertanian (BBSDLP), Bogor, 2011; 57p. Available: https://apps.worldagroforestry.org/sea/Publications/files/manual/MN0051-11.pdf. Accessed on [2022-05-28].
Saffari P, Md Noor MJ, Motamedi S, Hashim R, Ismail Z, Hadi BA. Experimental study on nonlinear shear strength behavior of a tropical granitic residual soil (Grade VI) at various initial moisture contents. J Teknol. 2017; 79(2): 39–46.
Sulaeman, Suparto, Eviati. Chemical analysis of soil, plants, water and fertilizer. Prasetyo B, Santoso D, Widowati L, editors. Bogor: Balai Penelitian Tanah; 2005. 136p. Available:https://repository.pertanian.go.id/server/api/core/bitstreams/77f52e6b-6a13-48bc-96d1-d6a35025d793/content. Accessed on [2022-05-28].
Antunes W C, Pompelli F M, Carretero D M, DaMatta F M. Allometric models for non-destructive leaf area estimation in coffee (Coffea arabica and Coffea canephora). Ann App.Biol, 2008; 153: 33–40. Available:https://onlinelibrary.wiley.com/doi/10.1111/j.1744-7348.2008.00235.x. Accessed on [2022-05-28].
Meilin A, Handoko S, Rubiana R, Rustam, Endrizal. Problems of Pests and Diseases on “liberika Tungkal Komposit” Coffee in Peatlands, Jambi Province. IOP Conf Ser Earth Environ Sci, 2019; 334(1): 012035.
Belay A, Ture K, Redi M, Asfaw A. Measurement of caffeine in coffee beans with UV/vis spectrometer. Food Chem, 2008; 108(1): 310–315.
Koesrini, Nursyamsi D. Lahan Rawa, Solusi Krisis Kedelai. Balittra. 2012 [cited 2019 Jan 3]. p. 1. Available:https://repository.pertanian.go.id/items/16c5ba18-f33b-49c3-9429-6cbf8c6d13fe. Accessed on [2022-05-28]. (in Indonesia
IBM. SPSS Statistics 22. 2022. Available:https://www.ibm.com/support/pages/downloading-ibm-spss-statistics-22. Accessed on [2022-02-09].
Gusfarina D S. Getting to know liberika coffee tungkal composite (Libtukom) Leaflet BPTP Jambi. 2014; 1–2. Available:https://4.bp.blogspot.com/-5ZYdBMW8hWk/WzCHoEcVkPI/AAAAAAAAExw/1npofWRsguUojvOavDo8PDd9ukauz_XnACEwYBhgL/s1600/20180402151540_IMG_1288.JPG. Accessed on [2022-02-09]. (in Indonesia).
Katimon A, Melling L. Moisture retention curve of tropical sapric and hemic peat. Malaysian J Civ Eng, 2007; 19(1): 84–90.
Lu L, Tibpromma S, Karunarathna S C, Jayawardena R S, Lumyong S, Xu J C, et al. Comprehensive Review of Fungi on Coffee. Pathogens, 2022; 11(4): 1–17.
Moore T R, Dalva M. The influence of temperature and water table position on carbon dioxide and methane emissions from laboratory columns of peatland soils. J Soil Sci, 1993; 44(4): 651–664.
Moore T R, Knowles R. The influence of water table levels on methane and carbon dioxide emissions from peatland soils. Can J Soil Sci, 1989; 69(1): 33–38.
Polzot C L. Carbon storage in coffee agroecosystems of Southern Costa Rica: Potential applications for the clean development mechanism. Faculty of Environmental Studies, 2004; 1: 162.
Otálvaro JSE, Osorio Saraz JA, Correa Londoño GA. Emission and fixation of greenhouse gases in potential specialty coffee production zones in Antioquia-Colombia. Rev Fac Nac Agron Medellin, 2017; 70(3): 8341–8349.
Segura MA, Andrade HJ. Carbon footprints in the coffee (Coffea arabica L.) productive chains with different certification standards in Costa Rica. Luna Azul. 2012; (35): 60–77. Available:https://revistasojs.ucaldas.edu.co/index.php/lunazul/article/view/1726/1642. Accessed on [2022-05-27]. (in Spanish).
Agus F, Henson I E, Sahardjo B H, Harris N, van Noordwijk M, Killen T J. Review of emission factors for assessment of CO2 emission from land use change to oil palm in Southeast Asia. In Killen, T. J., Goon, J., (eds) Report from the technical panels of the second RSPO GHG working group. Reports from the Technical Panels of the 2nd Greenhouse Gas Working Group of the Roundtable on Sustainable Palm Oil (RSPO). 2013. Available:https://apps.worldagroforestry.org/sea/Publications/files/report/RP0305-15.pdf. Accessed on [2021-04-22].
Hooijer A, Page S, Jauhiainen J, Lee WA, Lu XX, Idris A, et al. Subsidence and carbon loss in drained tropical peatlands. Biogeosciences, 2012; 9(3): 1053–1071.
Salim A G, Narendra B H, Dharmawan I W S, Pratiwi. Chemical and hydro-physical peat characteristics under agricultural peat land management in central Kalimantan, Iindonesia. Polish J Environ Stud, 2021; 30(5): 4647–4655.
Liu H, Rezanezhad F, Lennartz B. Impact of land management on available water capacity and water storage of peatlands. Geoderma, 2022; 406: 115521.
Drzymulska D. Peat decomposition - Shaping factors, significance in environmental studies and methods of determination; a literature review. Geologos. 2016; 22(1): 61–69.
Quinton W L, Gray D M, Marsh P. Subsurface drainage from hummock-covered hillslopes in the arctic tundra. J Hydrol, 2000; 237(1-2): 113–25.
Könönen M, Jauhiainen J, Laiho R, Kusin K, Vasander H. Physical and chemical properties of tropical peat under stabilised land uses. Mires Peat. 2015; 16: 1–13.
Deru J G C, Hoekstra N, van Agtmaal M, Bloem J, de Goede R, Brussaard L, et al. Effects of Ca: Mg ratio and pH on soil chemical, physical and microbiological properties and grass N yield in drained peat soil. New Zeal J Agric Res, 2021; 66: 61–82.
Maftu’ah E, Susilawati A, Hayati A. Effectiveness of ameliorant and fertilizer on improving soil fertility, growth and yields of red chili in degraded peatland. IOP Con Carbon storage in coffee agroecosystems of Southern Costa Rica: Potential applications for the clean development mechanism. Ser Earth Environ Sci, 2019; 393(1): 012011. doi: 10.1088/1755-1315/393/1/012011
Sopha G A, Effendi A M, Aprianto F, Firmansyah A. The incorporation of lime and NPK fertilizer on shallot production in peat soil. IOP Conf Ser Earth Environ Sci, 2021; 653(1): 012057.
Saputra R A, Sari N N. Ameliorant engineering to elevate soil pH, growth, and productivity of paddy on peat and tidal land. IOP Conf Ser Earth Environ Sci, 2021; 648(1): 012183.
Li G D, Singh R P, Brennan J P, Helyar K R. A financial analysis of lime application in a long-term agronomic experiment on the south-western slopes of New South Wales. Crop Pasture Sci, 2010; 61(1): 12–23.
Miettinen J, Hooijer A, Vernimmen R, Liew S C, Page S E. From carbon sink to carbon source: Extensive peat oxidation in insular Southeast Asia since 1990. Environ Res Lett, 2017; 12(2): 02401.
Joosten H, Tapio-Biström M-L, Tol S. Peatlands - guidance for climate change mitigation through conservation, rehabilitation and sustainable use. Mitigation of Climate Change in Agriculture (MICCA) Programme series 5. 2012. 1–100 p. Available:https://www.fao.org/3/an762e/an762e.pdf. Accessed on [2021-04-21].
Watanabe A, Purwanto B H, Ando H, Kakuda K-i, Jong F-S. Methane and CO2 fluxes from an Indonesian peatland used for sago palm (Metroxylon sagu Rottb.) cultivation: Effects of fertilizer and groundwater level management. Agric Ecosyst Environ, 2009; 134(1–2): 14–18.
Copyright (c) 2024 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.