Highly sensitive detection of daminozide using terahertz metamaterial sensors

Hanping Mao, Xiaoxue Du, Yuting Yan, Xiaodong Zhang, Guoxin Ma, Yafei Wang, Yong Liu, Bin Wang, Xiaoyue Yang, Qiang Shi

Abstract


In order to solve the problems of low sensitivity and complex sample pretreatment in traditional detection, a method was proposed in this study to detect daminozide using terahertz combined with a metamaterial sensor, which enables real-time and label-free molecular detection with high sensitivity. The correlation between the transmission frequency shift and absorbance of daminozide solution at different concentrations was analyzed. The simulation and experimental results showed that this metamaterial sensor could achieve highly sensitive sensing of daminozide solutions at 0.05 mg/L. The maximum quality factor (Qmax) of the two peaks could reach 5.78 and 13.05, and the maximum figure of merit (FOM) of the two peaks can reach 0.82 and 1.72. The maximum sensitivity of two resonance peaks reached 38.148 GHz/(mg∙L) and 133.516 GHz/(mg∙L) when the concentration of daminozide in the solution was 2000 mg/L. There was an obvious positive correlation between the transmission and transmission, frequency shift and frequency shift, and absorbance and absorbance of the resonance peak of daminozide solutions. Therefore, this platform not only opens up new possibilities for the microanalysis of the chemical composition of substances in solutions but also provides a valuable reference for the design of other metamaterial-based sensors in the field of food safety.
Keywords: Terahertz time-domain spectroscopy, plant growth regulator, detection, metamaterial
DOI: 10.25165/j.ijabe.20221506.7600

Citation: Mao H P, Du X X, Yan Y T, Zhang X D, Ma G X, Wang Y F, et al. Highly sensitive detection of daminozide using terahertz metamaterial sensors. Int J Agric & Biol Eng, 2022; 15(6): 180–188.

Keywords


Terahertz time-domain spectroscopy, plant growth regulator, detection, metamaterial

Full Text:

PDF

References


Wang M G, Nie H L, Han D D, Qiao X Q, Yan H Y, Shen S G. Cauliflower-like resin microspheres with tuneable surface roughness assolid-phase extraction adsorbent for efficient extraction and determination of plant growth regulators in cucumber. Food Chemistry, 2019; 295: 259-266.

Yan H Y, Wang F, Han D D, Yang G L. Simultaneous determination of four plant hormones in bananas by molecularly imprinted solid-phase extraction coupled with high performance liquid chromatography. Analyst, 2012; 137: 2884-2890.

Han Y H, Wang Z Q, Jia J, Bai L G, Liu H Y, Shen S G, et al. Newly designed molecularly imprinted 3-aminophenol-glyoxal-urea resin ashydrophilic solid-phase extraction sorbent for specific simultaneous determi-nation of three plant growth regulators in green bell peppers. Food Chemistry, 2020; 31: 125999. doi:10.1016/j.foodchem.2019.125999.

Zhao R, Zou B, Zhang G L, Xu D Q, Yang Y P. High-sensitivity identification of aflatoxin B1 and B2 using terahertz time-domain spectroscopy and metamaterial-based terahertz biosensor. Journal of Physics D: Applied Physics, 2020; 53(19): 195401. doi:10.1088/1361-6463/ab6f90.

Sun X D, Liu J B. Measurement of plumpness for intact sunflower seed using Terahertz transmittance imaging. Journal of Infrared, Millimeter, and Terahertz Waves, 2020; 41(3): 307-321.

Chen M, Singh L, Xu N N, Singh R N, Zhang W L, Xie L J. Terahertz sensing of highly absorptive water-methanol mixtures with multiple resonances in metamaterials. Optics Express, 2017; 25(13): 14089-14097.

Pang Y, Wang J, Cheng Q, Xia S, Zhou X Y, Xu Z, et al. Thermally tunable water-substrate broadband metamaterial absorbers. Applied Physics Letters, 2017; 110(10): 104103. doi:10.1063/1.4978205.

Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction. Science, 2001; 292(5514): 77-79.

Liu Z W, Lee H, Xiong Y, Sun C, Zhang X. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science. 2007; 315(5819): 1686-1686. doi: 10.1126/science.1137368.

Smolyaninov I I, Hung Y J, Davis C C. Magnifying superlens in the visible frequency range. Science, 2007; 315(5819): 1699-1701.

Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, et al. Metamaterial electromagnetic cloak at microwave frequencies. Science, 2006; 314(5801): 977-980.

Yi Z, Huang J, Cen C L, Chen X F, Zhou Z G, Tang Y J, et al Nanoribbon-ring cross perfect metamaterial graphene multi-band absorber in THz range and the sensing application. Results in Physics, 2019; 14: 102367. doi: 10.1016/j.rinp.2019.102367.

Tang M J, Xia L P, Wei D S, Yan S H, Zhang M K, Yang Z B, et al. Rapid and label-free metamaterial-based biosensor for fatty acid detection with terahertz time-domain spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020; 228: 117736. doi: 10.1016/j.saa.2019.117736.

Zhou R Y, Wang C, Huang Y X, Huang K, Wang Y L, Xu W D, et al. Lable-free terahertz microfluidic biosensor for sensitive DNA detection using graphene-metasurface hybrid structures. Biosensors and Bioelectronics, 2021; 188: 113336. doi: 10.1016/j.bios.2021.113336.

Li B, Bai J P, Zhang S J. Low concentration noroxin detection using terahertz spectroscopy combined with metamaterial. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021; 247: 119101. doi: 10.1016/j.saa.2020.119101.

Yan X, Yang M S, Zhang Z, Liang L J, Wei D Q, Wang M, et al. The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells. Biosensors and Bioelectronics, 2019; 126: 485-492.

Xu W D, Huang Y X, Zhou R Y, Wang Q, Yin J F, Kono J, et al. Metamaterial-free flexible graphene-enabled Terahertz sensors for pesticide detection at bio-interface. ACS Applied Materials & Interfaces, 2020; 12: 44281-44287.

Xu W D, Xie L J, Zhu J F, Wang W, Ye Z Z, Ma Y G, et al. Terahertz sensing of chlorpyrifos-methyl using metamaterials. Food Chemistry, 2017; 218: 330-334.

Ye Y X, Zhang Y X, Zhao Y, Ren Y P, Ren X D. Sensitivity influencing factors during pesticide residue detection research via a terahertz metasensor. Optics Express, 2021; 29(10): 15255-15268.

Shen Y, Zhang J Q, Pang Y Q, Wang J F, Ma H, Qu S B. Transparent broadband metamaterial absorber enhanced by water-substrate incorporation. Optics Express, 2018; 26(12): 15665. doi: 10.1364/OE.26.015665.

Yoo Y J, Ju S, Park S Y, Kim Y J, Bong J, Lim T, et al. Metamaterial absorber for electromagnetic waves in periodic water droplets. Scientific Reports, 2015; 5(1): 14018-14025. doi:10.1038/srep14018.

Xie J W, Zhu W R, Rukhlenko I D, Xiao F J, He C, Geng J P, et al. Water metamaterial for ultra-broadband and wide-angle absorption. Optics Express, 2018; 26(4): 5052-5059.

Zhang J Q, Wu X Y, Liu L Y, Huang C, Chen X Y, Tian Z, et al. Ultra-broadband microwave metamaterial absorber with tetramethylurea inclusion. Optics Express, 2019; 27(18): 25595-25602.

Xiong H, Yang F. Ultra-broadband and tunable saline water-based absorber in microwave regime. Optics Express. 2020; 28(4): 5306-5316.

Wang Q, Yin S, Shi X D, Fan J C, Huang K, Gao W L, et al. High‑sensitivity detection of trace imidacloprid and tetracycline hydrochloride by multi‑frequency resonance metamaterials. Journal of Food Measurement and Characterization, 2022; 16: 2041-2048.

Du X X, Zhang X D, Wang Y F, Ma G X, Liu Y, Wang B, et al. Highly sensitive detection of plant growth regulators by using terahertz time-domain spectroscopy combined with metamaterials. Optics Express; 2021; 29: 36535. doi:10.1364/OE.437909.

Dorney T D, Baraniuk R G, Mittleman D M. Material parameter estimation with terahertz time-domain spectroscopy. Journal of the Optical Society American A, 2001; 18: 1562-1571. doi: 10.1364/JOSAA.18.001562.

Duvillaret L, Garet F, Coutaz J L. A reliable method for extraction of material parameters in terahertz time-domain spectroscopy. IEEE Journal of Selected Topics in Quantum Electronics, 1996; 2: 739-746.

Chen T, Zhang Q, Li Z, Yin X H, Hu F R. Experimental and theoretical investigations of tartaric acid isomers by terahertz spectroscopy and density functional theory. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018; 205: 312-319.

Ye Y X, Zhang Y X, Zhao Y, Ren Y P, Ren X D. Sensitivity influencing factors during pesticide residue detection research via terahertz metasensor. Optics Express, 2021; 29 (10): 15255-15268. doi: 10.1364/OE.424367.

Yan X. Zhang X, Liang L, Yao J. Research progress on the application of terahertz-band metamaterials in biosensors. Spectroscopy and Spectral Analysis, 2014; 34: 2365-2371.

Zhao T G, Yu S L. Ultra-high sensitivity nanosensor based on multiple fano resonance in the MIM coupled plasmonic resonator. Plasmonics, 2017; 13(4): 1115-1120.

Saadeldin A, Hameed M, Elkaramany E, Obayya S. Highly Sensitive Terahertz Metamaterial Sensor. IEEE Sensors Journal, 2019; 19: 7993-7999.

Du X X, Wang Y F, Zhang X D, Ma G X, Liu Y, Wang B, et al. A study of plant growth regulators detection based on terahertz time-domain spectroscopy and density functional theory. RSC advance, 2021; 11: 28898-28907.

Guo X Y, Zhang Z, Yang M S, Bing P B, Yan X, Yang Q L, et al. Time-frequency double domain resolving by electromagnetically induced transparency metasensors for rapid and label-free detection of cancer biomarker midkine. Optics and Lasers in Engineering, 2021; 142: 106566. doi: 10.1016/j.optlaseng.2021.106566.

R-project. Available: http://www.r-project.org. Accessed on [2021-12-01].

O’Hara J F, Singh R J, Brener I, Smirnova E, Han J Q, Taylor A J, et al. Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations. Optics Express, 2008; 16: 1786-1795.

Xu W D, Xie L J, Zhu J F, Xu X, Ye Z Z, Wang C, et al. Gold nanoparticle-based Terahertz metamaterial sensors: Mechanisms and Applications. ACS Photonics, 2016; 3: 2308-2314.

Yi Z, Huang J, Cen C L, Chen X F, Zhou Z G, Tang Y J, et al. Nanoribbon-ring cross perfect metamaterial graphene multi-band absorber in THz range and the sensing application. Results in Physics, 2019; 14: 102367. doi: 10.1016/j.rinp.2019.102367.

Srivastava Y K, Cong L Q, Singh R J. Dual-surface flexible THz Fano metasensor. Applied Physics Letters, 2017; 111: 201101. doi: 10.1063/1.5000428.

Lin S J, Xu X L, Hu F R, Chen Z C, Wang Y L, Zhang L H, et al. Using antibody modified Terahertz metamaterial biosensor to detect concentration of carcinoembryonic antigen. IEEE Journal of Selected Topics in Quantum Electronics, 2021; 27: 6900207. doi:10.1109/JSTQE.2020.3038308.

Gupta M, Singh R. Terahertz sensing with optimized Q/V metasurface cavities. Advanced Optical Materials, 2020; 8: 1902025. doi: 10.1002/adom.201902025.

Wang Z Y, Geng Z X, Fang W H. Exploring performance of THz metamaterial biosensor based on flexible thin-film. Optics Express, 2020; 28(18): 26370-26384. doi: 10.1364/OE.402222.




Copyright (c) 2022 International Journal of Agricultural and Biological Engineering

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

2023-2026 Copyright IJABE Editing and Publishing Office