Highly sensitive detection of daminozide using terahertz metamaterial sensors
Abstract
Keywords: Terahertz time-domain spectroscopy, plant growth regulator, detection, metamaterial
DOI: 10.25165/j.ijabe.20221506.7600
Citation: Mao H P, Du X X, Yan Y T, Zhang X D, Ma G X, Wang Y F, et al. Highly sensitive detection of daminozide using terahertz metamaterial sensors. Int J Agric & Biol Eng, 2022; 15(6): 180–188.
Keywords
Full Text:
PDFReferences
Wang M G, Nie H L, Han D D, Qiao X Q, Yan H Y, Shen S G. Cauliflower-like resin microspheres with tuneable surface roughness assolid-phase extraction adsorbent for efficient extraction and determination of plant growth regulators in cucumber. Food Chemistry, 2019; 295: 259-266.
Yan H Y, Wang F, Han D D, Yang G L. Simultaneous determination of four plant hormones in bananas by molecularly imprinted solid-phase extraction coupled with high performance liquid chromatography. Analyst, 2012; 137: 2884-2890.
Han Y H, Wang Z Q, Jia J, Bai L G, Liu H Y, Shen S G, et al. Newly designed molecularly imprinted 3-aminophenol-glyoxal-urea resin ashydrophilic solid-phase extraction sorbent for specific simultaneous determi-nation of three plant growth regulators in green bell peppers. Food Chemistry, 2020; 31: 125999. doi:10.1016/j.foodchem.2019.125999.
Zhao R, Zou B, Zhang G L, Xu D Q, Yang Y P. High-sensitivity identification of aflatoxin B1 and B2 using terahertz time-domain spectroscopy and metamaterial-based terahertz biosensor. Journal of Physics D: Applied Physics, 2020; 53(19): 195401. doi:10.1088/1361-6463/ab6f90.
Sun X D, Liu J B. Measurement of plumpness for intact sunflower seed using Terahertz transmittance imaging. Journal of Infrared, Millimeter, and Terahertz Waves, 2020; 41(3): 307-321.
Chen M, Singh L, Xu N N, Singh R N, Zhang W L, Xie L J. Terahertz sensing of highly absorptive water-methanol mixtures with multiple resonances in metamaterials. Optics Express, 2017; 25(13): 14089-14097.
Pang Y, Wang J, Cheng Q, Xia S, Zhou X Y, Xu Z, et al. Thermally tunable water-substrate broadband metamaterial absorbers. Applied Physics Letters, 2017; 110(10): 104103. doi:10.1063/1.4978205.
Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction. Science, 2001; 292(5514): 77-79.
Liu Z W, Lee H, Xiong Y, Sun C, Zhang X. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science. 2007; 315(5819): 1686-1686. doi: 10.1126/science.1137368.
Smolyaninov I I, Hung Y J, Davis C C. Magnifying superlens in the visible frequency range. Science, 2007; 315(5819): 1699-1701.
Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, et al. Metamaterial electromagnetic cloak at microwave frequencies. Science, 2006; 314(5801): 977-980.
Yi Z, Huang J, Cen C L, Chen X F, Zhou Z G, Tang Y J, et al Nanoribbon-ring cross perfect metamaterial graphene multi-band absorber in THz range and the sensing application. Results in Physics, 2019; 14: 102367. doi: 10.1016/j.rinp.2019.102367.
Tang M J, Xia L P, Wei D S, Yan S H, Zhang M K, Yang Z B, et al. Rapid and label-free metamaterial-based biosensor for fatty acid detection with terahertz time-domain spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020; 228: 117736. doi: 10.1016/j.saa.2019.117736.
Zhou R Y, Wang C, Huang Y X, Huang K, Wang Y L, Xu W D, et al. Lable-free terahertz microfluidic biosensor for sensitive DNA detection using graphene-metasurface hybrid structures. Biosensors and Bioelectronics, 2021; 188: 113336. doi: 10.1016/j.bios.2021.113336.
Li B, Bai J P, Zhang S J. Low concentration noroxin detection using terahertz spectroscopy combined with metamaterial. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021; 247: 119101. doi: 10.1016/j.saa.2020.119101.
Yan X, Yang M S, Zhang Z, Liang L J, Wei D Q, Wang M, et al. The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells. Biosensors and Bioelectronics, 2019; 126: 485-492.
Xu W D, Huang Y X, Zhou R Y, Wang Q, Yin J F, Kono J, et al. Metamaterial-free flexible graphene-enabled Terahertz sensors for pesticide detection at bio-interface. ACS Applied Materials & Interfaces, 2020; 12: 44281-44287.
Xu W D, Xie L J, Zhu J F, Wang W, Ye Z Z, Ma Y G, et al. Terahertz sensing of chlorpyrifos-methyl using metamaterials. Food Chemistry, 2017; 218: 330-334.
Ye Y X, Zhang Y X, Zhao Y, Ren Y P, Ren X D. Sensitivity influencing factors during pesticide residue detection research via a terahertz metasensor. Optics Express, 2021; 29(10): 15255-15268.
Shen Y, Zhang J Q, Pang Y Q, Wang J F, Ma H, Qu S B. Transparent broadband metamaterial absorber enhanced by water-substrate incorporation. Optics Express, 2018; 26(12): 15665. doi: 10.1364/OE.26.015665.
Yoo Y J, Ju S, Park S Y, Kim Y J, Bong J, Lim T, et al. Metamaterial absorber for electromagnetic waves in periodic water droplets. Scientific Reports, 2015; 5(1): 14018-14025. doi:10.1038/srep14018.
Xie J W, Zhu W R, Rukhlenko I D, Xiao F J, He C, Geng J P, et al. Water metamaterial for ultra-broadband and wide-angle absorption. Optics Express, 2018; 26(4): 5052-5059.
Zhang J Q, Wu X Y, Liu L Y, Huang C, Chen X Y, Tian Z, et al. Ultra-broadband microwave metamaterial absorber with tetramethylurea inclusion. Optics Express, 2019; 27(18): 25595-25602.
Xiong H, Yang F. Ultra-broadband and tunable saline water-based absorber in microwave regime. Optics Express. 2020; 28(4): 5306-5316.
Wang Q, Yin S, Shi X D, Fan J C, Huang K, Gao W L, et al. High‑sensitivity detection of trace imidacloprid and tetracycline hydrochloride by multi‑frequency resonance metamaterials. Journal of Food Measurement and Characterization, 2022; 16: 2041-2048.
Du X X, Zhang X D, Wang Y F, Ma G X, Liu Y, Wang B, et al. Highly sensitive detection of plant growth regulators by using terahertz time-domain spectroscopy combined with metamaterials. Optics Express; 2021; 29: 36535. doi:10.1364/OE.437909.
Dorney T D, Baraniuk R G, Mittleman D M. Material parameter estimation with terahertz time-domain spectroscopy. Journal of the Optical Society American A, 2001; 18: 1562-1571. doi: 10.1364/JOSAA.18.001562.
Duvillaret L, Garet F, Coutaz J L. A reliable method for extraction of material parameters in terahertz time-domain spectroscopy. IEEE Journal of Selected Topics in Quantum Electronics, 1996; 2: 739-746.
Chen T, Zhang Q, Li Z, Yin X H, Hu F R. Experimental and theoretical investigations of tartaric acid isomers by terahertz spectroscopy and density functional theory. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018; 205: 312-319.
Ye Y X, Zhang Y X, Zhao Y, Ren Y P, Ren X D. Sensitivity influencing factors during pesticide residue detection research via terahertz metasensor. Optics Express, 2021; 29 (10): 15255-15268. doi: 10.1364/OE.424367.
Yan X. Zhang X, Liang L, Yao J. Research progress on the application of terahertz-band metamaterials in biosensors. Spectroscopy and Spectral Analysis, 2014; 34: 2365-2371.
Zhao T G, Yu S L. Ultra-high sensitivity nanosensor based on multiple fano resonance in the MIM coupled plasmonic resonator. Plasmonics, 2017; 13(4): 1115-1120.
Saadeldin A, Hameed M, Elkaramany E, Obayya S. Highly Sensitive Terahertz Metamaterial Sensor. IEEE Sensors Journal, 2019; 19: 7993-7999.
Du X X, Wang Y F, Zhang X D, Ma G X, Liu Y, Wang B, et al. A study of plant growth regulators detection based on terahertz time-domain spectroscopy and density functional theory. RSC advance, 2021; 11: 28898-28907.
Guo X Y, Zhang Z, Yang M S, Bing P B, Yan X, Yang Q L, et al. Time-frequency double domain resolving by electromagnetically induced transparency metasensors for rapid and label-free detection of cancer biomarker midkine. Optics and Lasers in Engineering, 2021; 142: 106566. doi: 10.1016/j.optlaseng.2021.106566.
R-project. Available: http://www.r-project.org. Accessed on [2021-12-01].
O’Hara J F, Singh R J, Brener I, Smirnova E, Han J Q, Taylor A J, et al. Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations. Optics Express, 2008; 16: 1786-1795.
Xu W D, Xie L J, Zhu J F, Xu X, Ye Z Z, Wang C, et al. Gold nanoparticle-based Terahertz metamaterial sensors: Mechanisms and Applications. ACS Photonics, 2016; 3: 2308-2314.
Yi Z, Huang J, Cen C L, Chen X F, Zhou Z G, Tang Y J, et al. Nanoribbon-ring cross perfect metamaterial graphene multi-band absorber in THz range and the sensing application. Results in Physics, 2019; 14: 102367. doi: 10.1016/j.rinp.2019.102367.
Srivastava Y K, Cong L Q, Singh R J. Dual-surface flexible THz Fano metasensor. Applied Physics Letters, 2017; 111: 201101. doi: 10.1063/1.5000428.
Lin S J, Xu X L, Hu F R, Chen Z C, Wang Y L, Zhang L H, et al. Using antibody modified Terahertz metamaterial biosensor to detect concentration of carcinoembryonic antigen. IEEE Journal of Selected Topics in Quantum Electronics, 2021; 27: 6900207. doi:10.1109/JSTQE.2020.3038308.
Gupta M, Singh R. Terahertz sensing with optimized Q/V metasurface cavities. Advanced Optical Materials, 2020; 8: 1902025. doi: 10.1002/adom.201902025.
Wang Z Y, Geng Z X, Fang W H. Exploring performance of THz metamaterial biosensor based on flexible thin-film. Optics Express, 2020; 28(18): 26370-26384. doi: 10.1364/OE.402222.
Copyright (c) 2022 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.