Design and experiment of the pneumatic cylinder type precision metering system for wheat
Abstract
Keywords: multi-rows cylinder, pneumatic metering device, wheat, precision
DOI: 10.25165/j.ijabe.20231605.7444
Citation: Abdallah A D, Liao Q X, Ibrahim E J, Wang L. Design and experiment of the pneumatic cylinder type precision metering system for wheat. Int J Agric & Biol Eng, 2023; 16(5): 88–94.
Keywords
Full Text:
PDFReferences
Hussain M I, Shah S H. Growth, yield and quality response of three wheat (Triticumaestivum L.) varieties to different levels of N, P and K. Int J of Agric & Bio Eng, 2002; 4(3): 362-364.
Iqtidar H, Muhammad A K, Ejaz A K. Bread wheat varieties as shown influenced by different nitrogen levels. J. Zhejiang Univ. Sci. 2006; 7(1): 70-78.
Domier K W. Determination of the optimum seedbed conditions for canola. An overview of canola agronomic and varietal development research. Canola Council of Canada. 1991; 10: 8-10.
Yasir S H, Liao Q X, Yu J, He D. Design and test of a pneumatic precision metering device for wheat. Agricultural Engineering International: CIGR Journal, 2012; 14(1): 16–25.
Singh R C, Singh G, Saraswat D C. Optimisation of design and operational parameters of a pneumatic seed metering device for planting cottonseeds. Biosystems Engineering, 2005; 92(4): 429–438
Datta R K. Development of Some Seeders with Particular Reference to Pneumatic Seed Drills. The Harvester, Indian Institute of Technology, Khargpur, India, 1974; 16, 26–29.
Karayel D. Performance of a modified precision vacuum seeder for the no-till sowing of maize and soybean. Soil & Tillage Research, 2009; 104: 121–125.
Bracy R P, Parish R L, McCoy J E. Precision seeder uniformity varies with theoretical spacing. ASAE Paper No. 981095. ASAE, St. Joseph, MI, 1998.
Liao Q X, Li J B, Qin G L. Experiment of pneumatic precision metering device for rapeseed. Transactions of the Chinese Society for Agricultural Machinery, 2010; 40 (8): 44 -48. (in Chinese)
Zhang Shiping, Chen Jin, Li Yaoming. Theoretical analysis and experiment on vibration conditions for vibrational air-suction tray precision seeding-machine. Transactions of the Chinese Society for Agricultural Machinery, 2008; 39(7): 56 -59. (in Chinese)
Li X, Liao Q X, Yu J J, Shu C X, Liao Y T. Dynamic analysis and simulation on sucking process of the pneumatic precision metering device for rapeseed. Journal of Food Agriculture & Environment, 2012; 10(1): 450–454.
Liao Y T, Huang H D, Li X, Yu J J, Yan Q Y, Liao Q X. Effects of seed pre-soaking on sowing performance by a pneumatic precision metering device for rapeseed. Transactions of the CSAM, 2013; 44(S1): 72–76. (In Chinese).
Zhang G Z, Zang Y, Luo X W, Wang Z M, Zhang Q, Zhang S S. Design and indoor simulated experiment of pneumatic rice seed metering device. Int J Agri & Biol Eng, 2015; 8(4): 10–18.
Cui T, Han D, Yin X, Li K, Xiao L, Yang L, et al. Design and experiment of inside-filling air-blowing maize precision seed metering device. Transactions of the CSAE, 2017; 33(1): 8–16. (in Chinese)
Karayel D, Barut Z B, Zmerzi A O. Mathematical modeling of vacuum pressure on a precision seeder. Biosystems Engineering, 2004; 87(4): 437-444.
Griepentrog H W. Seed distribution over the area. European Society of Agricultural Engineers, 98-A- 059, Oslo, 1998.
Karayel D, Ozmerzi A. Effect of tillage methods on sowing uniformity of maize. Canadian Biosystems Engineering, 2002; 44(2): 23-26.
Robinson R G, Ford J H, Lueschen W E, Rabas D L, Smith L J, Warnes D D, Wiersma J V. Response of sunflower to plant population. Agronomy Journal,1981; 72:869-871
Yazgi A, Degirmencioglu A. Optimisation of the seed spacing uniformity performance of a vacuum-type precision seeder using response surface methodology. Biosystems Engineering, 2007; 3(97): 347–356.
Moody F H, Hancock J H, Wilkerson J B. Evaluating planter performance-cotton seed placement accuracy. ASAE Paper No. 03 1146, 2003. St Joseph, Michigan.
Liao Q X, Li J B, Qin G L. Simulation analysis on air current field of pneumatic precision metering device for rapeseed. Transaction of the CSAM, 2009; 40(7): 78–82. (in Chinese)
Karayel D, Wiesehoff M, Özmerzi A, Müller J. Laboratory measurement of seed drill seed spacing and velocity of fall of seeds using high-speed camera system. Computers and Electronics in Agriculture, 2006; 50(2): 89–96.
Li Y M, Zhao Z, Chen J, Xu L Z. Numerical simulation and experiment on the seeds pickup performance of precision air-suction seeder. Transactions of the CSAM, 2008; 39(10): 95–99. (in Chinese)
Liao Q X, Li J B, Qin G L. Experiment of pneumatic precision metering device for rapeseed. Transaction of the CSAM, 2009; 40(8): 44–48. (in Chinese)
Liao Q X, Zhang M, Yu J J, Liu X H. Pneumatic centralized metering device for rapeseed. Transactions of the CSAM, 2011; 42(8): 30–34. (in Chinese)
Li M, Liao Q X, Liao Y T, Shu C X, Li L. Analysis on seeding process of pneumatic cylinder-type centralized rapeseed precision metering device. Transactions of the CSAE, 2014; 30(23): 17–27.
Liao Y T, Wang L, Liao Q X. Design and test of an inside-filling pneumatic precision centralized seed-metering device for rapeseed. Int J Agric & Biol Eng, 2017; 10(2): 56–62
Yazgi A, Degirmencioglu A. Measurement of seed spacing uniformity performance of a precision metering unit as function of the number of holes on vacuum plate. Measurement, 2014; 56: 128–135.
Lü J Q, Yang Y, Li Z H, Qin S Q, Li J C, Liu Z Y. Design and experiment of an air-suction potato seed metering device. Int J Agri & Biol Eng, 2016; 9(5): 33–42.
Searle C L, Kocher M F, Smith J A, Blankenship E E. Field slope effects on uniformity of corn seed spacing for three precision planter metering systems. Applied Engineering in Agriculture, 2008; 24(5): 581–586.
Ibrahim E J, Liao Q X, Wang L, Liao Y T, Yao L. Design and experiment of multi-row pneumatic precision metering device for rapeseed. Int J Agric & Biol Eng, 2018; 11(5): 116–123.
Barut Z B, Zmerzü A. Effect of different operating parameters on seed holding in the single seed metering unit of a pneumatic planter. Turk J Agric For, 2004; 28: 435–441.
Copyright (c) 2023 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.