Automatic detection of pecan fruits based on Faster RCNN with FPN in orchard
Abstract
Keywords: pecan fruit, fruit detection, Faster RCNN, FPN, uneven illumination correction
DOI: 10.25165/j.ijabe.20221506.7241
Citation: Hu C H, Shi Z F, Wei H L, Hu X D, Xie Y N, Li P P. Automatic detection of pecan fruits based on Faster RCNN with FPN in orchard. Int J Agric & Biol Eng, 2022; 15(6): 189–196.
Keywords
Full Text:
PDFReferences
Kurtulmus F, Lee W S, Vardar A. Immature peach detection in colour images acquired in natural illumination conditions using statistical classifiers and neural network. Precision Agriculture, 2014; 15: 57–79.
Yang C, Lee W S, Williamson J G. Classification of blueberry fruit and leaves based on spectral signatures. Biosystems Engineering, 2012; 113(4): 351–362.
Stajnko D, Lakota, M, Hočevar M. Estimation of number and diameter of apple fruits in an orchard during the growing season by thermal imaging. Computers and Electronics in Agriculture, 2004; 42: 31–42.
Méndez Perez R, Cheein F A, Rosell-Polo J R. Flexible system of multiple RGB-D sensors for measuring and classifying fruits in agri-food Industry. Computers and Electronics in Agriculture, 2017; 139: 231–242.
Tsoulias N, Paraforos D S, Xanthopoulo G, Zude-Sasse M. Apple shape detection based on geometric and radiometric features using a LiDAR laser scanner. Remote Sensing, 2020; 12(15): 2481. doi: 10.3390/rs12152481.
Zhou R, Damerow L, Sun Y, Blanke M M. Using colour features of cv. ‘Gala’ apple fruits in an orchard in image processing to predict yield. Precision Agriculture, 2012; 13: 568–580.
Bargoti S, Underwood J P. Image segmentation for fruit detection and yield estimation in apple orchards. Journal of Field Robotics, 2017; 34(6): 1039–1060.
Liakos K G, Busato P, Moshou D, Pearson S, Bochtis D. Machine learning in agriculture: A review. Sensors, 2018; 18(8): 2674. doi: 10.3390/s18082674.
Wang C L, Tang Y C, Zou X J, SiTu W M. A robust fruit image segmentation algorithm against varying illumination for vision system of fruit harvesting robot. Optik, 2017; 131: 626–631.
Zhao C Y, Lee W S, He D J. Immature green citrus detection based on colour feature and sum of absolute transformed difference (SATD) using colour images in the citrus grove. Computers and Electronics in Agriculture, 2016; 124: 243–253. doi: 10.1016/j.ijleo.2016.11.177.
Ye Q, Huang P, Zhang Z, Zheng Y, Fu L, Yang W. Multiview learning with robust double-sided twin SVM. IEEE Transactions on Cybernetics, 2021; 52(12): 12745-12758.
Girshick R, Donahue J, Darrell T, Malik J. Rich feature hierarchies for accurate object detection and semantic segmentation. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus: IEEE, 2014; pp.580–587. doi: 10.1109/CVPR.2014.81.
Ren S, He K, Girshick, Sun J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Transaction Pattern Analysis and Machine Intelligence, 2017; 39(6): 1137–1149.
He K, Gkioxari G, Dollár P, Girshick R. Mask R-CNN, 2017. doi: 10.1109/TPAMI.2018.2844175.
Wang J M, Chen X X, Cao L, An F, Chen B Q, Xue L F, et al. Individual rubber tree segmentation based on ground-based LiDAR data and faster R-CNN of Deep Learning. Forests 2019; 10: 793. doi: 10.3390/f10090793.
Sun J, He X, Ge X, Wu X, Shen J, Song Y. Detection of key organs in tomato based on deep migration learning in a complex background. Agriculture 2018; 8: 196. doi: 10.3390/agriculture8120196.
Kang H, Chen C. Fruit detection, segmentation and 3D visualisation of environments in apple orchards. Computers and Electronics in Agriculture 2020; 171: 105302. doi: 10.1016/j.compag.2020.105302.
Redmon J, Divvala S, Girshick R, Farhadi A. You Only Look Once: Unified, real-time object detection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016; pp.779-788. doi: 10.1109/CVPR.2016.91.
Fu C Y, Liu W, Ranga A, Tyagi A, Berg A C. DSSD: Deconvolutional Single Shot Detector, arXiv, 2017; arXiv: 1701.06659.
Kamilaris A, Prenafeta-Boldú F X. Deep learning in agriculture: A survey. Computers and Electronics in Agriculture, 2018; 147: 70–90.
Yu Y, Zhang K L, Zhang D X, Yang L, Cui T. Fruit detection for strawberry harvesting robot in non-structural environment based on Mask-RCNN. Computers and Electronics in Agriculture, 2019; 163: 104846. doi: 10.1016/j.compag.2019.06.001.
Vasconez J P, Delpiano J, Vougioukas S, Auat Cheein F. Comparison of convolutional neural networks in fruit detection and counting: A comprehensive evaluation. Computers and Electronics in Agriculture, 2020; 173: 105348. doi: 10.1016/j.compag.2020.105348.
Tian Y N, Yang G D, Wang Z, Wang H, Li E, Liang Z Z. Apple detection during different growth stages in orchards using the improved YOLO-V3 model. Computers and Electronics in Agriculture, 2019; 157: 417–426.
Koirala A, Walsh K B, Wang Z, McCarthy C. Deep learning for real-time fruit detection and orchard fruit load estimation: Benchmarking of ‘MangoYOLO’. Precision Agriculture, 2019; 20: 1107–1135.
He K M, Sun J, Tang X O. Single image haze removal using dark
channel prior. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition. 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Miami: IEEE, 2009; pp.1956–1963. doi: 10.1109/TPAMI.2010.168.
Guo C L, Li C Y, Guo J C, Loy C C, Hou J H, Sam K W. Zero-reference deep curve estimation for low-light image enhancement. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020; pp.1777-1786. doi: 10.1109/CVPR42600.2020.00185.
Everingham M, Zisserman A, Williams C K I, Van Gool L, Allan M, Bishop C M, Chapelle O, et al. The 2005 PASCAL visual object classes challenge. In: Machine Learning Recognising Tectual Entailment, MLCW 2005, Springer, 2005; 3944: pp.117-176. doi: 10.1007/11736790_8.
He K M, Zhang X Y, Ren S Q, Sun J. Identity mappings in deep residual networks. In: Computer Vision – ECCV 2016, Springer, 2016; 9908: 630-645. doi: 10.1007/978-3-319-46493-0_38.
Fu L Y, Zhang D< Ye Q L. Recurrent thrifty attention network for remote sensing scene recognition. IEEE Transactions on Geoscience and Remote Sensing, 2021; 59(10): 8257–8268. .
Lin T Y, Dollar P, Girshick R, He K, Hariharan B, Belongie S. Feature Pyramid Networks for Object Detection. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu: IEEE, 2017; pp.936–944. doi: 10.1109/CVPR.2017.106.
Yang Q M, Xiao D Q, Lin S C. Feeding behavior recognition for group-housed pigs with the Faster R-CNN. Computers and Electronics in Agriculture, 2018; 155: 453–460. doi: 10.1016/j.compag.2018.11.002.
Vahidi H, Klinkenberg B, Johnson B A, Moskal L M, Yan W. Mapping the individual trees in urban orchards by incorporating volunteered geographic information and very high resolution optical remotely sensed data: A template matching-based approach. Remote Sensensing, 2018; 10(7): 1134. doi: 10.3390/rs10071134.
Fan P, Lang G D, Yan B, Lei X Y, Guo P J, Liu Z J, et al. A method of segmenting apples based on gray-centered RGB color space. Remote Sensing, 2021; 13(6): 1211. doi: 10.3390/rs13061211.
Kang H W, Chen C. Fruit detection, segmentation and 3D visualisation of environments in apple orchards. Computers and Electronics in Agriculture, 2020; 171: 105302. doi: 10.1016/j.compag.2020.105302.
Zhuang J J, Luo S M, Hou C J, Tang Y, He Y, Xue X Y. Detection of orchard citrus fruits using a monocular machine vision-based method for automatic fruit picking applications. Computers and Electronics in Agriculture, 2018; 152: 64–73.
Sun J, He X F, Ge X, Wu X H, Shen J F, Song Y Y. Detection of key organs in tomato based on deep migration learning in a complex background. Agriculture, 2018; 8(12): 196. doi: 10.3390/agriculture8120196.
Liang C X, Xiong J T, Zheng Z H, Zhong Z, Li Z H, Chen S M, et al. A visual detection method for nighttime litchi fruits and fruiting stems. Computers and Electronics in Agriculture, 2020; 169(6): 105192. doi: 10.1016/j.compag.2019.105192.
Wan Nurazwin Syazwani R, Muhammad Asraf H, Megat Syahirul Amin M A, Nur Dalila K A. Automated image identification, detection and fruit counting of top-view pineapple crown using machine learning. Alexandria Engineering Journal, 2022; 61: 1265–1276.
Chen T C, Zhang R H, Zhu L X, Zhang S A, Li X M. A method of fast segmentation for banana stalk exploited lightweight multi-feature fusion deep neural network. Machines, 2021; 9(3): 66. doi: 10.3390/ machines9030066.
Copyright (c) 2022 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.