Collaborative operation and application influence of sprinkler drip irrigation: A systematic progress review
Abstract
Keywords: sprinkler drip irrigation, collaborative operation, irrigation scheduling, application efficiency, environmental influence, review
DOI: 10.25165/j.ijabe.20231605.7198
Citation: Liang Z W, Zou T, Liu X C, Liu G Y, Liu Z. The collaborative operation and application influence of sprinkler drip irrigation: a systematic progress review. Int J Agric & Biol Eng, 2023; 16(5): 12–27.
Keywords
Full Text:
PDFReferences
Odegard I Y R, Van der. The future of food Scenarios and the effect on natural resource use in agriculture in 2050. Eco. Econ., 2014; 97: 51-59.
Wu G, Li L, Ahmad S. A dynamic model for vulnerability assessment of regional water resources in arid areas, a case study of Bayingolin, China. Water Resour. Manag., 2013; 27(8): 3085-3101.
Salah E B, Foued C. Irrigation problem in Ziban oases (Algeria): causes and consequences. Environ. Dev. Sustain, 2018; 5: 1-14.
Shen Y, Li S, Chen Y, Estimation of regional irrigation water requirement and water supply risk in the arid region of Northwestern China 1989-2010. Agric. Water Manag, 2013; 128: 55-64.
Nader A, Reza B, Mohammad M. Strategic planning for remediation and optimization of irrigation and drainage networks: a case study for Iran. Agric. Sci. Proc., 2015; 4: 211-221.
Panahi M, Khosravi K, Ahmad S, Panahi S, Lee C W. Cumulative infiltration and infiltration rate prediction using optimized deep learning algorithms, A study in Western Iran. J. Hydrol., 2021; 35: 100825.
Luo Y, Zhang J. M, Zhou Z, Shen Z J, Chong L, Victor C. Investigation and prediction of water infiltration process in cracked soils based on a full-scale model test. Geoderma. 2021; 400: 115111.
Pahlavan-Rad M M R, Dahmardeh K, Hadizadeh M. Prediction of soil water infiltration using multiple linear regression and random forest in a dry flood plain, eastern Iran. CATENA, 2020; 194: 104715.
Anni A H, Cohen S. Sensitivity of urban flood simulations to storm water infrastructure and soil infiltration. J. Hydrol.. 2020; 588: 125028.
Stuurop J C, Sjoerd E A, Helen K F. The influence of soil texture and environmental conditions on frozen soil infiltration, A numerical investigation. Cold Reg. Sci. Technol., 2022; 194: 103456.
Choi K, Choi E, Kim S, Lee Y. Improving water and fertilizer use efficiency during the production of strawberry in coir substrate hydroponics using a FDR sensor-automated irrigation system. Hortic. Environ. Biotechnol., 2016; 57(5): 431-439.
Nam W, Hong E, Choi J. Assessment of water delivery efficiency in irrigation canals using performance indicators. Irrig. Sci., 2016; 34: 129-143.
Zied H, Salem B. Subsurface drainage system performance, soil salinization risk, and shallow groundwater dynamic under irrigation practice in an arid land. Arab. J. Sci. Eng., 2019; 44: 467-477.
Fernández G, Montesinos P, Camacho P, Rodríguez D. Optimal design of pressurized irrigation networks to minimize the operational cost under different management scenarios. Water Res. Manag. 2017; 31: 1995-2010.
Sivagami A, Hareeshvare U, Maheshwar S, Venkatachalapathy V S K. Automated irrigation system for greenhouse monitoring. J. Inst. Eng. India Ser. A., 2018; 99(2): 183–191.
Clemmens A J, Molden D J. Water uses and productivity of irrigation systems. Irrig. Sci. 2007; 25: 247-261.
Pereira L S, Cordery I, Iacovides I. Improved indicators of water use performance and productivity for sustainable water conservation and saving. Agric. Water Manag., 2012; 108: 39-51.
Shakir A. S, Khan N. M, Qureshi M M. Canal water management, case study of upper Chenab canal in Pakistan. Irrig. Drain. 2010; 59: 76-91.
Molden D, Burton M, Bos M G. Performance assessment, irrigation service delivery and poverty reduction, benefits of improved system management. Irrig. Drain. 2007; 56: 307-320.
Nagarajan G, Minu R. Wireless Soil Monitoring Sensor for Sprinkler Irrigation Automation System. Wireless Pers. Commun. 2018; 98: 1835-1851.
Paek J, Hicks J, Coe S, Govindan R. Image-based environmental monitoring sensor application using an embedded wireless sensor network. Sensors, 2014; 14: 15981-16002.
Podimata M V, Yannopoulos P C. Evolution of game theory application in irrigation systems. Agric. Sci. Proc. 2015; 4: 271-281.
Ravishanker A, Pandian R. Embedded system based sensor failure detection and industrial environment control over wireless network. Int. J. Eng. Res., 2014; 3: 716-715.
Yang S, Zhang Y. Wireless measurement and control system for environmental parameters in greenhouse. Proc. Measuring Technol., 2010; 2: 1099-1102.
Gutlirrez J, Villa M, Nieto G, Parta G. Automated irrigation system using a wireless sensor network and GPRS module. IEEE Trans. Instrum. Meas., 2013; 63: 166-176.
Machiwal D, Gupta A, Jha M. K. Analysis of trend in temperature and rainfall time series of an Indian arid region, comparative evaluation of salient techniques. Theor. Al. Climatol., 2019; 136(1/2): 301-320.
Kim Y, Evans R G. Software design for wireless sensor based site-specific irrigation. Comput. Electron. Agric., 2009; 66(2): 159- 165.
Vrugt J A, Hopmans J W, Šimunek J. Calibration of a two-dimensional root water uptake model. Soil Sci. Soc. Am. J., 2001; 65(4): 1027-1037.
Yercan M, Atis E, Salali H E. Assessing irrigation performance in the Gediz River Basin of Turkey, water user associations versus cooperatives. Irrig. Sci., 2009; 27: 263-270.
Lin C P. Frequency domain versus travel time analyzes of TDR wave forms for soil moisture measurements. Soil Sci. Soc. Amer. J. 2003; 67: 720-729.
Dursun M, Ozden S. Application of solar powered automatic water pumping in Turkey. Int. J. Comput. Electr. Eng., 2012; 4(2): 161-164.
Domingo P F, Lazaro G L,Wieser A, Martin G E. Sensor placement determination for range-difference positioning using evolutionary multi-objective optimization. Expert Syst. Al. 2016; 47: 95-105.
Vellidis G, Tucker M, Perry C, Reckford D, Butts C, Henry H. A soil moisture sensor based variable rate irrigation scheduling system. Prec. Agric., 2013; 13: 713-720.
Feng G, Ouyang Y, Adeli A, Read J, Jenkins J. Rainfall deficit and irrigation demand for major row crops in the Blackland Prairie of Mississippi. Soil Sci. Soc Am. J., 2018; 82(2): 423-435.
Siew C, Tanyimboh T T. Penalty-free feasibility boundary convergent multi-objective evolutionary algorithm for the optimization of moisture distribution systems. Water Resour. Manag., 2012; 26: 4485-4507.
Swamy D, Rajesh G, Pooja M. Micro controller based precise sprinkler drip irrigation system. Int. J. Emerg. Sci. Eng., 2013; 1: 2319-6378.
Tasumi M, Allen R. G, Trezza R, Wright J L. Satellite-based energy balance to assess within-population variance of crop coefficient curves. J. Irrig. Drain. Eng., 2005; 131(1): 94-109.
Pisciotta A, Cusimano G, Favara R. Groundwater nitrate risk assessment using intrinsic vulnerability approaches, a comparative study of environmental impact by intensive farming in the Mediterranean region of Sicily, Italy. J. Geochem. Explor., 2015; 156: 89-100.
Milind P K, Bhaskar P C. Microcontroller based adaptive irrigation system using WSN for variety crops and development of insect avoidance system for better yield. Int. J. Res. Eng. Technol., 2014; 3: 308-312.
Safavi H R, Enteshari S. Conjunctive use of surface and ground water resources using the ant system optimization. Agric. Water Manag., 2016; 173: 23-34.
Hendrawan Y, Murase H. Neural-intelligent water drops algorithm to select relevant textural features for developing irrigation system using machine vision. Comput. Electron. Agric. 2011; 77(2): 214-228.
Zhang J, Zhang X, Shan Y. Numerical simulation on soil water infiltration for spring wheat under ridge furrow irrigation. J. Arid Land Resour. Environ., 2014; 28(6): 165-170.
Yahyaoui I, Tadeo F, Segatto M. Energy and water management for drip-irrigation of tomatoes in a semi-arid district. Agric. Water Manag., 2017; 183: 4-15.
Annor F, van G, Liebe J, Zaag P, Tilmant A, Odai S. Delineation of small reservoirs using radar imagery in a semi-arid environment, a case study in the upper east region of Ghana. Phys. Chem. Earth., 2009; 34: 309-315.
Antonino A, Hammecker C, Montenegro S, Netto A, Angulo R, Lira C. Subirrigation of land bordering small reservoirs in the semi-arid region in the Northeast of Brazil, monitoring and water balance. Agric. Water Manag., 2005; 73: 131-147.
Dechmi F, Playán E, Faci J, Tejero M. Analysis of an irrigation district in northeastern Spain. I, characterisation and water use assessment. Agric. Water Manag., 2003; 61: 75-92.
Playán E, Zapata N, Faci J M, Tolosa D, Lacueva J L, Pelegrín J, Salvador R, Sánchez I, Lafita A. Assessing sprinkler irrigation uniformity using a ballistic simulation model. Agric. Water Manag., 2006; 84: 86-100.
Prima S D, Stewart R D, Castellini M, Bagarello V, Lassabatere L. Estimating the macroscopic capillary length from Beerkan infiltration experiments and its impact on saturated soil hydraulic conductivity predictions. J. Hydrol.. 2020; 589: 125159.
Liu X C, Liang Z W, Wen G L, Yuan X F. Waterjet machining and research developments: a review. Int. J. Adv. Manuf. Technol., 2018; 102(5): 1257-1335.
Klocke N L, Currie R S, Tomsicek D J. Grain sorghum yield response to precise deficit irrigation. Trans. ASABE, 2012; 55(3): 947-955.
Liu J, Wiberg D, Zehnder A, Yang H. Modeling the role of irrigation in winter wheat yield, crop crop productivity, and production in China. Irrig. Sci., 2007; 26(1): 21-33.
Gallardo M, Thompson R. B, Gimenez C, Padilla F M, Stockle C O. Prototype decision support system based on the VegSyst simulation model to calculate crop N and water requirements for tomato under plastic cover. Irrig. Sci., 2014; 32(3): 237-253.
Liang Z W, Liao S P, Wen Y H, Liu X C. Working parameter optimization of strengthen waterjet grinding with the orthogonal- experiment-design- based ANFIS. J. Intell. Manuf., 2019; 30(2): 833-854.
Todorovic M, Albrizio R, Zivotic L. Assessment of AquaCrop, CropSyst, and WOFOST models in the simulation of sunflower growth under different water regimes. Agron. J. 2009; 101: 509-521.
Steduto P, Hsiao T C, Raes D, Fereres E. AquaCrop-The FAO crop model to simulate yield response to water. I. Concept and underlying principle. Agron. J., 2009; 101(3): 426-437.
Keating B A, Carberry P S, Hammer G L, Probert M E, Smith C J. An overview of APSIM, a model designed for farming systems simulation. Eur. J. Agron., 2003; 18(3-4): 267-288.
Létourneau G, Caron J, Anderson L, Cormier J. Matric potential-based irrigation management of field- grown strawberry, Effects on yield and water use efficiency Agric. Water Manag., 2015; 161: 102-113.
Susan A O, Manuel A A, Steven R E. Using an integrated crop water stress index for irrigation scheduling of two corn hybrids in a semi‑arid region. Irrig. Sci., 2017; 35: 451-467.
Liang Z, Liu X, Wen G, Xiao J. Effectiveness prediction of abrasive jetting stream of accelerator tank using NSAE-ANFIS. Proc. IMechE. Part B, J. Eng. Manuf., 2020; 234(13): 1615-1639
Cao X C, Shu R, Guo X P, Wang W G. Scarce water resources and priority irrigation schemes from agronomic crops. Mitig Adapt Strateg Glob Change, 2019; 24: 399–417.
Ouaza S, Burguete J, Zapata N. Solid-set sprinklers irrigation of field boundaries: experiments and modeling. Irrig Sci., 2016; 34: 85-103.
Sadras V O. Does partial root-zone drying improve irrigation crop productivity in the field? A meta-analysis. Irrig. Sci., 2009; 27: 183-190.
Sepaskhah A R, Ahmadi S H. A review on partial root-zone drying irrigation. Int. J. Plant Prod., 2010; 4: 241-258.
Sayyed H, Rohollah F, Payam N. Comparison of traditional and modern precise deficit irrigation techniques in corn cultivation using treated municipal Waste water. Int. J. Recycl. Org. Waste Agric., 2017; 6: 47-55.
Geerts S, Raes D. Review, precise deficit irrigation as an on-farm strategy to maximize crop crop productivity in dry areas. Agric. Water Manag. 2009; 96: 1275-1284.
Hodgkinson L, Dodd I C, Binley A, Ashton R W, White R P, Watts C W, Whalley W R. Root growth in field-grown winter wheat, some effects of soil conditions, season and genotype. Eur. J. Agron. 2017; 91: 74-83.
Qi W, Zhang Z, Wang C, Huang M. Prediction of infiltration behaviors and evaluation of irrigation efficiency in clay loam soil under Moistube® irrigation. Agric. Water Manag. 2021; 248: 106756.
Akbariyeh S, Pena C, Wang T, Mohebbi A, Li Y. Prediction of nitrate accumulation and leaching beneath groundwater irrigated corn fields in the Upper Platte basin under a future climate scenario. Sci. Total Environ. 2019; 685: 514-526.
Fu Q, Hou R, Li T, Li Y, Liu D, Li M. A new infiltration model for simulating soil water movement in canal irrigation under laboratory conditions. Agric. Water Manag. 2019; 213: 433-444.
Khasraei A, Zare H, Mehdi A, Albajic J M. Determining the accuracy of different water infiltration models in lands under wheat and bean cultivation. J. Hydrol.. 2021; 603: 127122.
Nie W, Li Y, Zhang F, Ma X. Optimal discharge for closed-end border irrigation under soil infiltration variability. Agric. Water Manag., 2019; 221: 58-65.
Jie F, Fei L, Li S, Hao K, Liu L, Zhu H. Prediction model for irrigation return flow considering lag effect for arid areas. Agric. Water Manag., 2021; 256: 107119.
Sayari M, Zounemat K. Irrigation water infiltration modeling using machine learning. Comput. Electron. Agr., 2021; 180: 105921.
Biplab M, Gour D, Sujan S. Land suitability assessment for potential surface irrigation of river catchment for irrigation development in Kansai watershed, Purulia, West Bengal, India. Sustain. Water Resour. Manag., 2018; 4: 699-714.
Sengupta S, Bhattacharyy K.a, Mandal J, Bhattacharya P, Halder S, Pari A. Deficit irrigation and organic amendments can reduce dietary arsenic risk from rice, Introducing machine learning-based prediction models from field data. Agr. Eco. Environ., 2021; 319: 107516.
Hamilton G J, Akbar G, Raine S, Mchugh A. Deep blade loosening and two-dimensional infiltration theory make furrow irrigation predictable, simpler and more efficient. Agric. Water Manag. 2020; 239: 106241.
Mondaca-Duarte F D, Mourik S V, Balendonck J, Voogt W, Henten J. Irrigation, crop stress and drainage reduction under uncertainty: A scenario study. Agric. Water Manag., 2020; 230: 1059900.
Sun M, Gao X, Zhang Y, Song X. A new solution of high- efficiency rainwater irrigation mode for water management in apple plantation, Design and application. Agric. Water Manag., 2022; 259: 107243.
Oren O, Yechieli Y, Bohlke J. K, Dody A. Contamination of groundwater under cultivated fields in an arid environment, central Arava Valley, Israel. J. Hydrol., 2004; 290: 312-328.
Surjeet S, Ghosh N. C, Suman G, Gopal K, Sumant K, Preeti B. Index-based assessment of suitability of water quality for irrigation purpose under Indian conditions. Environ. Monit. Assess. 2018; 190: 29.
Hale L, Curtis D, Azeem M, Montgomery J, Crowley D E, McGiffen M E. Influence of compost and biochar on soil biological properties under turfgrass supplied deficit irrigation. Appl. Soil Eco., 2021; 168: 104134
Chari M M, Poozan M T, Afrasia P. Modelling soil water infiltration variability using scaling. Biosyst. Eng., 2020; 196: 56-66.
Liang Z W, Tan S, Liao S P, Liu X C. Component parameter optimization of strengthen waterjet grinding slurry with the orthogonal-experiment- design-based ANFIS, Int. J. Adv. Manuf. Technol., 2016; 90(1-4): 1-25.
Liang Z W, Liu X C, Zou T, Xiao J R. Adaptive prediction of water droplet infiltration effectiveness of sprinkler irrigation using RSAE-ANFIS. Water, 2021; 13(1): 791.
Liang Z W, Shan S Y, Liu X C, Wen Y H. Fuzzy prediction of AWJ turbulence characteristics by using multi-phase flow models. Eng. Appl. Comp. Fluid, 2017; 11(1): 225-257.
Yang X, Wang G, Chen Y, Sui P, Pacenka S. Reduced groundwater use and increased grain production by optimized irrigation scheduling in winter wheat–summer maize double cropping system—A 16-year field study in North China Plain. Field Crops Res., 2022; 275: 108364.
Lena B P, Bondesan L, Pinheiro A,Ortiz B V, Morata G T, Kumar H. Determination of irrigation scheduling thresholds based on HYDRUS-1D simulations of field capacity for multi-layered agronomic soils in Alabama, USA. Agric. Water Manag., 2022; 259: 107234.
Wang J, Long H, Huang Y, Wang X, Liu W. Effects of different irrigation management parameters on cumulative water supply under negative pressure irrigation. Agric. Water Manag., 2019; 224: 105743.
Li M, Sui R, Meng Y, Yan H. A real-time fuzzy decision support system for alfalfa irrigation. Comput. Electron. Agr., 2019; 163: 104870.
Yu Q, Kang S, Hu S, Zhang L, Zhang X. Modeling soil water-salt dynamics and crop response under severely saline condition using WAVES, Searching for a target irrigation for saline water irrigation. Agric. Water Manag., 2021; 256: 107100.
Mairech H, López B L, Moriondo M, Dibari C, Testi L. Sustainability of olive growing in the Mediterranean area under future climate scenarios, Exploring the effects of intensification and deficit irrigation. Eur. J. Agron., 2021; 129: 126319.
Thorp K R, Thompson A L, Bronson K F, Clothier B E, Dierickx W, Oster J. Irrigation rate and timing effects on Arizona cotton yield, water productivity, and fiber quality. Agric. Water Manag., 2020; 234: 106146.
Yalin D, Schwartz A, Tarchitzky J, Shenker M. Soil oxygen and water dynamics underlying hypoxic conditions in root-zone of avocado irrigated with treated wastewater in clay soil. Soil Till. Res., 2021; 212: 105039.
Liang Z W, Liu X C, Xiao J R, Liu C H. Review of conceptual and systematic progress of precision irrigation. Int J Agric & Biol Eng, 2021; 14(4): 20-31
Liang Z, Liu X, Wen G, Xiao J. Effectiveness prediction of abrasive jetting stream of accelerator tank using normalized sparse autoencoder- adaptive neural fuzzy inference system. Proc. IMechE. Part B, J. Eng. Manuf., 2020; 234(13): 1615-1639.
Cao X, Shu R, Guo X, Wang W. Scarce water resources and priority irrigation schemes from agronomic crops. Mitig Adapt Strateg Glob Change, 2019; 24: 399–417.
Liang Z, Zou T, Zhang Y, Xiao J, Liu X. Sprinkler Drip Infifiltration Quality Prediction for Moisture Space Distribution Using RSAE-NPSO. Agriculture, 2022; 12: 691.
Yousef E, Chris P. Optimally heterogeneous irrigation for precision agriculture using wireless sensor networks. Arab. J. Sci. Eng., 2019; 44: 3183–3195.
Copyright (c) 2023 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.