Segmentation of field grape bunches via an improved pyramid scene parsing network
Abstract
Keywords: grape bunches, semantic segmentation, deep learning, improved PSPNet
DOI: 10.25165/j.ijabe.20211406.6903
Citation: Chen S, Song Y Y, Su J Y, Fang Y L, Shen L, Mi Z W, et al. Segmentation of field grape bunches via an improved pyramid scene parsing network. Int J Agric & Biol Eng, 2021; 14(6): 185–194.
Keywords
Full Text:
PDFReferences
Yu Y, Zhang K, Yang L, Zhang D. Fruit detection for strawberry harvesting robot in non-structural environment based on Mask-RCNN. Computers and Electronics in Agriculture, 2019; 163: 104846. doi: 10.1016/ j.compag.2019.06.001.
Xiong J, Liu Z, Lin R, Bu R, He Z L, Yang Z G, Liang C. Green grape detection and picking-point calculation in a night-time natural environment using a charge-coupled device (CCD) vision sensor with artificial illumination. Sensors (Basel, Switzerland), 2018; 18(4): 969. doi: 10.3390/s18040969.
Murillo-Bracamontes E A, Martinez-Rosas M E, Miranda-Velasco M M, Martinez-Reyes H L, Martinez-Sandoval J R, Cervantes-De-Avila H. Implementation of Hough transform for fruit image segmentation. Procedia Engineering, 2012; 35: 230–239. doi: 10.1016/j.proeng.2012.04. 185.
Reis M J, Morais R, Peres E, Pereira C, Contente O, Soares S, Valente A, Baptista J, Ferreira P J S, Cruz J B. Automatic detection of bunches of grapes in natural environment from color images. Journal of Applied Logic, 2012; 10(4): 285–290. doi: 10.1016/j.jal.2012.07.004.
Liu S, Whitty M. Automatic grape bunch detection in vineyards with an SVM classifier. Journal of Applied Logic, 2015; 13(4): 643–653. doi: 10.1016/j.jal.2015.06.001.
Pérez-Zavala R, Torres-Torriti M, Cheein F A, Troni G. A pattern recognition strategy for visual grape bunch detection in vineyards. Computers and Electronics in Agriculture, 2018; 151: 136–149. doi: 10.1016/j.compag.2018.05.019.
Cecotti H, Rivera A, Farhadloo M, Pedroza M A. Grape detection with convolutional neural networks. Expert Systems with Applications, 2020; 159: 113588. doi: 10.1016/j.eswa.2020.113588.
Milella A, Marani R, Petitti A, Reina G. In-field high throughput grapevine phenotyping with a consumer-grade depth camera. Computers and Electronics in Agriculture, 2019; 156: 293–306. doi: 10.1016/j.compag.2018.11.026.
Marani R, Milella A, Petitti A, Reina G. Deep neural networks for grape bunch segmentation in natural images from a consumer-grade camera. Precision Agriculture, 2021; 22(2): 387–413. doi: 10.1007/s11119-020- 09736-0.
Dias P A, Tabb A, Medeiros H. Multispecies fruit flower detection using a refined semantic segmentation network. IEEE robotics and automation letters, 2018; 3(4): 3003–3010.
Lin K, Gong L, Huang Y, Liu C, Pan J. Deep learning-based segmentation and quantification of cucumber powdery mildew using convolutional neural network. Frontiers in plant science, 2019; 10: 155. doi: 10.3389/fpls.2019.00155.
Ganchenko V, Starovoitov V, Zheng X. Image semantic segmentation based on high-resolution networks for monitoring agricultural vegetation. In: 2020 22nd International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), IEEE, 2020; pp.264–269. doi: 10.1109/SYNASC51798.2020.0050.
Tassis L M, De Souza J E T, Krohling R A. A deep learning approach combining instance and semantic segmentation to identify diseases and pests of coffee leaves from in-field images. Computers and Electronics in Agriculture, 2021; 186: 106191. doi: 10.1016/j.compag.2021.106191.
Chen S, Zhang K, Zhao Y, Sun Y, Ban W, Chen Y, et al. An approach for rice bacterial leaf streak disease segmentation and disease severity estimation. Agriculture, 2021; 11(5): 420. doi: 10.3390/ agriculture11050420.
Esgario J, Castro P, Tassis L M, Krohling R A. An app to assist farmers in the identification of diseases and pests of coffee leaves using deep learning. Information Processing in Agriculture, 2021; In press. doi: 10.1016/ j.inpa.2021.01.004.
Kang H, Chen C J S. Fruit detection and segmentation for apple harvesting using visual sensor in orchards. Sensors, 2019; 19(20): 4599. doi: 10.3390/s19204599.
Roy K, Chaudhuri S S, Pramanik S. Deep learning based real-time Industrial framework for rotten and fresh fruit detection using semantic segmentation. Microsystem Technologies, 2021; 27: 3365–3375.
Li J H, Tang Y C, Zou X J, Lin G C, Wang H J. Detection of fruit-bearing branches and localization of litchi clusters for vision-based harvesting robots. IEEE Access, 2020; 8: 117746–117758.
Kestur R, Meduri A, Narasipura O. MangoNet: A deep semantic segmentation architecture for a method to detect and count mangoes in an open orchard. Engineering Applications of Artificial Intelligence, 2019; 77: 59–69. doi: 10.1016/j.engappai.2018.09.011.
Shu B, Mu J, Zhu Y. AMNet: Convolutional neural network embeded with attention mechanism for semantic segmentation. In: Proceedings of the 2019 3rd High Performance Computing and Cluster Technologies Conference, 2019; pp.261–266. doi: 10.1145/3341069.3342988.
Lin C-Y, Chiu Y-C, Ng H F, Shih T K, Lin K-H. Global-and-local context network for semantic segmentation of street view images. Sensors, 2020; 20(10): 2907. doi: 10.3390/s20102907.
Wang Y, Lyu J, Xu L, Gu Y, Zou L, Ma Z. A segmentation method for waxberry image under orchard environment. Scientia Horticulturae, 2020; 266: 109309. doi: 10.1016/j.scienta.2020.109309.
Li Q, Jia W, Sun M, Hou S, Zheng Y. A novel green apple segmentation algorithm based on ensemble U-Net under complex orchard environment. Computers and Electronics in Agriculture, 2021; 180: 105900. doi: 10.1016/j.compag.2020.105900.
Amiri S A, Hassanpour H. A preprocessing approach for image analysis using gamma correction. International Journal of Computer Applications, 2012; 38(12): 38–46.
Woo S, Park J, Lee J-Y, Kweon I S. CBAM: Convolutional block attention module. In: Proceedings of the European conference on computer vision - ECCV 2018, Springer, Cham, 2018; pp.3–19. doi: 10.1007/978-3-030-01234-2_1.
Hesamian M H, Jia W, He X, Kennedy P J. Atrous convolution for binary semantic segmentation of lung nodule. In: ICASSP 2019 - 2019 IEEE international Conference on Acoustics, Speech and Signal Processing, IEEE, 2019; pp.1015–1019. doi: 10.1109/ICASSP.2019.8682220.
Fu H, Meng D, Li W, Wang Y. Bridge Crack Semantic Segmentation Based on Improved Deeplabv3+. Journal of Marine Science and Engineering, 2021; 9(6): 671. doi: 10.3390/jmse9060671.
Chen Y, Li Y, Wang J, Chen W, Zhang X. Remote sensing image ship detection under complex sea conditions based on deep semantic segmentation. Remote Sensing, 2020; 12(4): 625. doi: 10.3390/ rs12040625.
Wang W, Fu Y, Dong F, Li F. Semantic segmentation of remote sensing ship image via a convolutional neural networks model. IET Image Processing, 2019; 13(6): 1016–1022.
Huang L, He M, Tan C, Jiang D, Li G, Yu H. Jointly network image processing: multi-task image semantic segmentation of indoor scene based on CNN. IET Image Processing, 2020; 14(15): 3689–3697. doi: 10.1049/iet-ipr.2020.0088.
Pi Y, Nath N D, Behzadan A H. Detection and semantic segmentation of disaster damage in UAV footage. Journal of Computing in Civil Engineering, 2021; 35(2): 04020063. doi: 10.1061/(asce)cp.1943-5487. 0000947.
Copyright (c) 2021 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.