High-efficiency tea shoot detection method via a compressed deep learning model
Abstract
Keywords: deep learning, tea shoot detection, model compression, high-efficiency
DOI: 10.25165/j.ijabe.20221503.6896
Citation: Li Y T, He L Y, Jia J M, Chen J N, Lyu J, Wu C Y. High-efficiency tea shoot detection method via a compressed deep learning model. Int J Agric & Biol Eng, 2022; 15(3): 159–166.
Keywords
Full Text:
PDFReferences
Food and Agriculture Organization of the United Nations (FAO). Current market situation and medium term outlook: FAO. Available: http://www.fao.org/3/BU642en/bu642en.pdf. Accessed on [2020-11-23].
Han Y, Xiao R H, Song Y Z, Ding Q W. Design and evaluation of tea-plucking machine for improving quality of tea. Applied Engineering in Agriculture, 2019; 35(6): 979–986.
Yang H, Chen L, Ma Z, Chen M, Zhong Y, Deng F, et al. Computer vision-based high-quality tea automatic plucking robot using Delta parallel manipulator. Computers and Electronics in Agriculture, 2021; 181: 105946. doi: 10.1016/j.compag.2020.105946.
Motokura K, Takahashi M, Ewerton M, Peters J. Plucking motions for tea harvesting robots using probabilistic movement primitives. IEEE Robotics and Automation Letters, 2020; 5(2): 3275–3282.
Yuan J. Research process analysis of robotics selective harvesting technologies. Transactions of the CSAM, 2020; 51(9): 1–17. (in Chinese)
Tang Y, Han W, Hu A, Wang W. Design and experiment of intelligentized tea-plucking machine for human riding based on machine vision. Transactions of the CSAM, 2016; 47(7): 15–20. (in Chinese)
Zhang L, Zhang H, Chen Y, Dai S, Li X, Kenji I, et al. Real-time monitoring of optimum timing for harvesting fresh tea leaves based on machine vision. Int J Agric & Biol Eng, 2019; 12(1): 6–9.
Karunasena G, Priyankara H. Tea bud leaf identification by using machine learning and image processing techniques. International Journal of Scientific & Engineering Research, 2020; 11(8): 624–628.
Zhang L, Zou L, Wu C, Jia J, Chen J. Method of famous tea sprout identification and segmentation based on improved watershed algorithm. Computers and Electronics in Agriculture, 2021; 184: 106108. doi: 10.1016/j.compag.2021.106108.
Li Y, He L, Jia J, Lyu J, Chen J, Qiao X, et al. In-field tea shoot detection and 3D localization using an RGB-D camera. Computers and Electronics in Agriculture, 2021; 185: 106149. doi: 10.1016/j.compag.2021.106149.
Kamilaris A, Prenafeta-Boldu F X. Deep learning in agriculture: A survey. Computers and Electronics in Agriculture, 2018; 147(1): 70–90.
Yang H, Chen L, Chen M, Ma Z, Deng F, Li M, et al. Tender tea shoots recognition and positioning for picking robot using improved YOLO-V3 Model. IEEE Access, 2019; 7: 180998-181011.
Chen Y-T, Chen S-F. Localizing plucking points of tea leaves using deep convolutional neural networks. Computers and Electronics in Agriculture, 2020; 171: 105298. doi: 10.1016/j.compag.220.105298.
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015; 521(7553): 436–444.
Liu L, Ouyang W, Wang X, Fieguth P, Chen J, Liu X, et al. Deep learning for generic object detection: A survey. International Journal of Computer Vision, 2020; 128(2): 261–318.
Szegedy C, Wei L, Yangqing J, Sermanet P, Reed S, Anguelov D, et al. Going deeper with convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, USA: IEEE, 2015; pp.1–9. doi: 10.1109/CVPR.2015.7298594.
Tan M X, Pang R, Le Q V. EfficientDet: Scalable and efficient object detection. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA: IEEE, 2020; pp.10778–10787. doi: 10.1109/CVPR42600.2020.01079.
Liu Z, Li J, Shen Z, Huang G, Yan S, Zhang C. Learning efficient convolutional networks through network slimming. In: 2017 IEEE International Conference on Computer Vision, Venice, Italy: IEEE, 2017; pp.2755–2763. doi: 10.1109/ICCV.2017.298.
Molchanov P, Mallya A, Tyree S, Frosio I, Kautz J. Importance estimation for neural network pruning. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, USA: IEEE, 2019; pp.11256–11264. doi: 10.1109/CVPR.2019.01152.
Han S, Pool J, Tran J, Dally W J. Learning both weights and connections for efficient neural networks. In: Proceedings of the 28th International Conference on Neural Information Processing Systems, Montreal, Canada: MIT Press, 2015; pp.1135–1143.
Zhang P Y, Zhong Y X, Li X Q. SlimYOLOv3: Narrower, faster and better for real-time UAV applications. In: 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), Seoul: IEEE, 2019; pp.37–45. doi: 10.1109/ICCVW.2019.00011.
Wu D, Lyu S, Jiang M, Song H. Using channel pruning-based YOLO v4 deep learning algorithm for the real-time and accurate detection of apple flowers in natural environments. Computers and Electronics in Agriculture, 2020; 178: 105742. doi: 10.1016/j.compag.2020.105742.
Wang D, He D. Channel pruned YOLO V5s-based deep learning approach for rapid and accurate apple fruitlet detection before fruit thinning. Biosystems Engineering, 2021; 210: 271–281.
Xu P, Cao J, Shang F, Sun W, Li P. Layer pruning via fusible residual convolutional block for deep neural networks. arXiv. 2020; arXiv: 2011.14356v1. doi: 10.48550/arXiv.2011.14356.
Redmon J, Farhadi A. Yolov3: An incremental improvement. arXiv, 2018; arXiv:1804.02767. doi: 10.48550/arXiv.1804.02767.
He K M, Zhang X Y, Ren S Q, Sun J. Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA: IEEE, 2016; pp.770–778. doi: 10.1109/CVPR.2016.90.
He Y, Zhang X, Sun J. Channel pruning for accelerating very deep neural networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy: IEEE, 2017; pp.1398–1406. doi: 10.1109/ ICCV.2017.155.
Copyright (c) 2022 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.