Effects of different LED light colors on growth performance and harmful gas emission of broilers breeding in a digital rearing chamber
Abstract
Keywords: broiler, growth properties, harmful gas, ammonia, illumination environment
DOI: 10.25165/j.ijabe.20221504.6766
Citation: Jie D F, Zhang Z X, He J C, Zhou Y F, Zhu G Y. Effects of different LED light colors on growth performance and harmful gas emission of broilers breeding in a digital rearing chamber. Int J Agric & Biol Eng, 2022; 15(4): 71–78.
Keywords
Full Text:
PDFReferences
Myles L T. Atmospheric science: Underestimating ammonia. Nature Geoscience, 2009; 2(7): 461–462.
Clarisse L, Clerbaux C, Dentener F, Hurtmans D, Coheur P-F. Global ammonia distribution derived from infrared satellite observations. Nature Geoscience, 2009; 2(7): 479–483.
Herrero M, Henderson B, Havlík P, Thornton P K, Conant R T, Smith P, et al. Greenhouse gas mitigation potentials in the livestock sector. Nature Climate Change, 2016; 6(5): 452–461.
Wang Y, Dong H, Zhu Z, Gerber P J, Xin H, Smith P, et al. Mitigating greenhouse gas and ammonia emissions from swine manure management: A system analysis. Environmental Science & Technology, 2017; 51(8): 4503–4511.
Tian H, Lu C, Ciais P, Michalak A M, Canadell J G, Saikawa E, et al. The terrestrial biosphere as a net source of greenhouse gases to the atmosphere. Nature, 2016; 531(7593): 225–228.
Pauleta S R, Carepo M S P, Moura I. Source and reduction of nitrous oxide. Coordination Chemistry Reviews, 2019; 387: 436–449.
Yao Q, Yang Z, Li H, Buser M D, Wanjura J D, Downey P M, et al. Assessment of particulate matter and ammonia emission concentrations and respective plume profiles from a commercial poultry house. Environmental Pollution, 2018; 238: 10–16.
Naseem S, King A J. Ammonia production in poultry houses can affect health of humans, birds, and the environment - techniques for its reduction during poultry production. Environmental Science & Pollution Research, 2018; 25(16): 15269–15293.
Wei F X, Hu X F, Xu B, Zhang M H, Li S Y, Sun Q Y, et al. Ammonia concentration and relative humidity in poultry houses affect the immune response of broilers. Genetics and Molecular Research, 2015; 14(2): 3160–3169.
Wei F X, Hu X F, Sa R N, Liu F Z, Li S Y, Sun Q Y. Antioxidant capacity and meat quality of broilers exposed to different ambient humidity and ammonia concentrations. Genetics and Molecular Research, 2014; 13(2): 3117–3127.
Sa R N, Xing H, Luan S J, Sun Y B, Sun C Y, Zhang H F. Atmospheric ammonia alters lipid metabolism-related genes in the livers of broilers (Gallus gallus). Journal of Animal Physiology and Animal Nutrition, 2018; 102(2): e941–e947.
Yi B, Chen L, Sa R N, Zhong R Q, Xing H, Zhang H F. Transcriptome profile analysis of breast muscle tissues from high or low levels of atmospheric ammonia exposed broilers (Gallus gallus). Plos One, 2016; 11(9): e0162631. doi: 10.1371/journal.pone.0162631.
Yi B, Chen L, Sa R N, Zhong R Q, Xing H, Zhang H F. High concentrations of atmospheric ammonia induce alterations of gene expression in the breast muscle of broilers (Gallus gallus) based on RNA-Seq. BMC Genomics, 2016; 17: 598. doi: 10.1186/s12864-016-2961-2.
Guais A, Brand G, Jacquot L, Karrer M, Dukan S, Grévillot G, et al. Toxicity of carbon dioxide: A review. Chemical Research in Toxicology, 2011; 24(12): 2061–2070.
Purswell J L, Davis J D, Luck B D, Kim E J, Olanrewaju H A, Kiess A S, et al. Effects of elevated carbon dioxide concentrations on broiler chicken performance from 28 to 49 days. International Journal of Poultry Science, 2011; 10(8): 597–602.
Olanrewaju H A, Thaxton J P, Dozier W A, Purswell J, Collier S D, Branton S L. Interactive effects of ammonia and light intensity on hematochemical variables in broiler chickens. Poultry Science, 2008; 87(7): 1407–1414.
Yoshimura T, Yasuo S, Watanabe M, Iigo M, Yamamura T, Hirunagi K, et al. Light-induced hormone conversion of T4 to T3 regulates photoperiodic response of gonads in birds. Nature, 2003; 426(6963): 178–181.
Collins S, Forkman B, Kristensen H.H, Sandøe P, Hocking P M. Investigating the importance of vision in poultry: Comparing the behaviour of blind and sighted chickens. Applied Animal Behaviour Science, 2011; 133(1-2): 60–69.
Olanrewaju H A, Thaxton J P, Dozier III W A, Purswell J, Roush W B, Branton S L. A review of lighting programs for broiler production. International Journal of Poultry Science, 2006; 5(4): 301–308.
Yang Y F, Pan C H, Zhong R H, Pan J M. The quantitative models for broiler chicken response to monochromatic, combined, and mixed light-emitting diode light: A meta-analysis. Poultry Science, 2018; 97(6): 1980–1989.
Marshel J H, Kim Y S, Machado T A, Quirin S, Benson B, Kadmon J, et al. Cortical layer–specific critical dynamics triggering perception. Science, 2019; 365(6453): eaaw5202. doi: 10.1126/science.aaw5202.
Cao J, Wang Z, Dong Y, Zhang Z, Li J, Li F, et al. Effect of combinations of monochromatic lights on growth and productive performance of broilers. Poultry Science, 2012; 91(12): 3013–3018.
Zhang Z Q, Cao J, Wang Z X, Dong Y L, Chen Y X. Effect of a combination of green and blue monochromatic light on broiler immune response. Journal of Photochemistry and Photobiology B: Biology, 2014; 138: 118–123.
Olanrewaju H A, Miller W W, Maslin W R, Collier S D, Purswell J L, Branton S L. Effects of light sources and intensity on broilers grown to heavy weights. Part 1: Growth performance, carcass characteristics, and welfare indices. Poultry Science, 2016; 95(4): 727–735.
Xie D, Li J, Wang Z X, Cao J, Li T T, Chen J L, et al. Effects of monochromatic light on mucosal mechanical and immunological barriers in the small intestine of broilers. Poultry Science, 2011; 90(12): 2697–2704.
Pan J M, Yang Y F, Yang B, Dai W H, Yu Y H. Human-friendly light-emitting diode source stimulates broiler growth. Plos One, 2015; 10(8): e0135330. doi: 10.1371/journal.pone.0135330.
Sharma N K, Choct M, Dunlop M W, Wu S B, Castada H Z, Swick R A. Characterisation and quantification of changes in odorants from litter headspace of meat chickens fed diets varying in protein levels and additives. Poultry Science, 2017; 96(4): 851–860.
Foster R G, Follett B K. The involvement of a rhodopsin-like photopigment in the photoperiodic response of the Japanese quail. Journal of Comparative Physiology A, 1985; 157(4): 519–528.
Yang Y F, Yu Y H, Pan J M, Ying Y B, Zhou H. A new method to manipulate broiler chicken growth and metabolism: Response to mixed LED light system. Scientific Reports, 2016; 6: 25972. doi: 10.1038/srep25972.
Lougheed T. Hidden blue hazard? LED lighting and retinal damage in rats. Environmental Health Perspectives, 2014; 122(3): A81. doi: 10.1289/ehp.122–A81.
Lockley S W, Brainard G C, Czeisler C A. High sensitivity of the human circadian melatonin rhythm to resetting by short wavelength light. The Journal of Clinical Endocrinology & Metabolism 2003; 88(9): 4502–4505.
Hart D W, Wolf S E, Herndon D N, Chinkes D L, Lal S O, Obeng M K, et al. Energy expenditure and caloric balance after burn: increased feeding leads to fat rather than lean mass accretion. Annals of Surgery, 2002; 235(1): 152–161.
Chepete H J, Xin H, Li H. Effect of partially covering the turkey litter surface on ammonia emission. Journal of Applied Poultry Research, 2012; 21(3): 513–521.
Ritz C W, Fairchild B D, Lacy M P. Implications of ammonia production and emissions from commercial poultry facilities: A review. Journal of Applied Poultry Research, 2004; 13(4): 684–692.
Lu M, Bai J, Wei F X, Xu B, Sun Q Y, Li J, Wang G L, et al. Effects of alpha-lipoic acid supplementation on growth performance, antioxidant capacity and biochemical parameters for ammonia-exposed broilers. Animal Science Journal, 2017; 88(8): 1220–1225.
Chadwick D, Sommer S, Thorman R, Fangueiro D, Cardenas L, Amon B, Misselbrook T. Manure management: Implications for greenhouse gas emissions. Animal Feed Science and Technology, 2011; 166–167: 514–531.
Pereira J L S, Ferreira S, Pinheiro V, Trindade H. Ammonia, nitrous oxide, carbon dioxide and methane emissions from commercial broiler houses in mediterranean portugal. Water, Air, and Soil Pollution, 2018; 229: 377. doi: 10.1007/s11270-018-4026-4.
Morton G J, Cummings D E, Baskin D G, Barsh G S, Schwartz M W. Central nervous system control of food intake and body weight. Nature, 2006; 443(7109): 289–295.
Jha R, Berrocoso J F D. Dietary fiber and protein fermentation in the intestine of swine and their interactive effects on gut health and on the environment: A review. Animal Feed Science and Technology, 2016; 212: 18–26.
Miles D M, Brooks J P, Sistani K. Spatial contrasts of seasonal and intraflock broiler litter trace gas emissions, physical and chemical properties. Journal of Environmental Quality, 2011; 40(1): 176–187.
Koerkamp P W G G. Review on emissions of ammonia from housing systems for laying hens in relation to sources, processes, building design and manure handling. Journal of Agricultural Engineering Research, 1994; 59(2): 73–87.
Miles D M, Rowe D E, Cathcart T C. High litter moisture content suppresses litter ammonia volatilization. Poultry Science, 2011; 90(7): 1397–1405.
Madrid J, López M J, Orengo J, Martínez S, Valverde M, Megías M D, Hernández F. Effect of aluminum sulfate on litter composition and ammonia emission in a single flock of broilers up to 42 days of age. Animal, 2012; 6(8): 1322–1329.
DeLaune P B, Moore P A, Daniel T C, Lemunyon J L. Effect of chemical and microbial amendments on ammonia volatilization from composting poultry litter. Journal of Environmental Quality, 2004; 33(2): 728–734.
Chepete J H, Xin H W, Li H. Ammonia emissions of laying-hen manure as affected by accumulation time. Journal of Poultry Science, 2011; 48(2): 133–138.
van der Hoevenhangoor E, Paton N D, van de Linde I B, Verstegen M W A, Hendriks W H. Moisture content in broiler excreta is influenced by excreta nutrient contents. Journal of Animal Science, 2013; 91(12): 5705–5713.
Hwang S J, Hanaki K. Effects of oxygen concentration and moisture content of refuse on nitrification, denitrification and nitrous oxide production. Bioresource Technology, 2000; 71(2): 159–165.
Neerackal G M, Ndegwa P M, Harrison J H, Joo H S. Manure-pH management for mitigating ammonia emissions from dairy barns and liquid manure storages. Applied Engineering in Agriculture, 2017; 33(2): 235–242.
Patience J F, Austic R E, Boyd R D. Effect of dietary electrolyte balance on growth and acid-base status in swine. Journal of Animal Science, 1987; 64: 457–466.
Yang Y, Mchoct P. Dietary modulation of gut microflora in broiler chickens: a review of the role of six kinds of alternatives to in-feed antibiotics. World's Poultry Science Journal, 2009; 65(1): 97–114.
Jung S J, Houde R, Baurhoo B, Zhao X, Lee B H. Effects of galacto-oligosaccharides and a Bifidobacteria lactis-based probiotic strain on the growth performance and fecal microflora of broiler chickens. Poultry Science, 2008; 87(9): 1694–1699.
Francesch M, Brufau J. Nutritional factors affecting excreta/litter moisture and quality. World’s Poultry Science Journal, 2004; 60(1): 64–75.
Ferguson N S, Gates R S, Taraba J L, Cantor A H, Pescatore A J, Straw M L, et al. The effect of dietary protein and phosphorus on ammonia concentration and litter composition in broilers. Poultry Science, 1998; 77(10): 1085–1093.
van der Hoeven-Hangoor E, Rademaker C J, Paton N D, Verstegen M W A, Hendriks W H. Evaluation of free water and water activity measurements as functional alternatives to total moisture content in broiler excreta and litter samples. Poultry Science, 2014; 93(7): 1782–1792.
Copyright (c) 2022 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.