Optimized design and experiment of spiral-type intra-row weeding actuator for maize (Zea mays L.) planting
Abstract
Keywords: optimization design, spiral forward, intra-row weeding actuator, maize planting
DOI: 10.25165/j.ijabe.20211406.6542
Citation: Jia H L, Gu B L, Ma Z Y, Liu H L, Wang G, Li M W, et al. Optimized design and experiment of spiral-type intra-row weeding actuator for maize (Zea mays L.) planting. Int J Agric & Biol Eng, 2021; 14(6): 54–60.
Keywords
Full Text:
PDFReferences
Du Z L, Angers D A, Ren T S, Zhang Q Z, Li G C. The effect of no-till on organic C storage in Chinese soils should not be overemphasized: A meta-analysis. Agriculture, Ecosystems & Environment, 2017; 236: 1–11.
Jia H, Wang G, Guo L, Zhuang J, Tang L. Wind erosion control utilizing standing corn residue in Northeast China. Soil & Tillage Research, 2015; 153: 112–119.
Kouwenhoven J K. Intra-row mechanical weed control possibilities and problems. Soil & Tillage Research, 1997; 41(1): 87–104.
Lian Q, Tan F, Fu X M, Zhang P, Liu X, Zhang W. Design of precision variable-rate spray system for unmanned aerial vehicle using automatic control method. Int J Agric & Biol Eng, 2019; 12(2): 29–35.
Melander B, Jabran K, De Notaris C, Znova L, Green O. Inter-row hoeing for weed control in organic spring cereals-influence of inter-row spacing and nitrogen rate. European Journal of Agronomy, 2018; 101: 49–56.
Melander B. Optimization of the adjustment of a vertical axis rotary brush weeder for intra-row weed control in row crops. Journal of Agricultural Engineering Research, 1997; 68(1): 39–50.
Fogelberg F, Kritz G. Intra-row weeding with brushes on vertical axes factors influencing in-row soil height. Soil & Tillage Research, 1999; 50(2): 149–157.
Tian L, Cao C M, Qin K, Fang L F, Ge J. Design and test of post-seat weeding machine for paddy. Int J Agric & Biol Eng, 2021; 14(3): 112–122.
Chen Z W, Li N, Sun Z, Li T, Zhang CL, Li W. Optimization and experiment of intra-row brush weeding manipulator based on planetary gear train. Transactions of the CSAM, 2015; 46(9): 94–99. (in Chinese)
Jia H L, Li S S, Wang G, Liu H L. Design and experiment of seedling avoidable weeding control device for intertillage maize. Transactions of the CSAM, 2018; 34(7): 15–22. (in Chinese)
Pannacci E, Tei F, Guiducci M. Mechanical weed control in organic winter wheat. Italian Journal of Agronomy, 2017; 12(4): 336–342.
Peruzzi A, Martelloni L, Frasconi C, Fontanelli M, Firchio M, Raffaelli M. Machines for non-chemical intra-row weed control in narrow and wide-row crops: a review. Journal of Agricultural Engineering, 2017; 48(2): 583. doi: 10.4081/jae.2017.583.
Cordill C, Grift T E. Design and testing of an intra-row mechanical weeding machine for corn. Biosystems Engineering, 2011; 110(3): 247–252.
Xie C Q, Yang C, Hummel Jr A, Johnson G A, Izuno F T. Spectral reflectance response to nitrogen fertilization in field grown corn. Int J Agric & Biol Eng, 2018; 11(4): 118–126.
Blasco J, Aleixos N, Roger J M, Rabatel G, Molto E. Robotic weed control using machine vision. Biosystems Engineering, 2002; 83(2): 149–157.
Zhou F J, Wang W M, Li X L, Tang Z F. Design and experiment of the cam rocker swing intra-row weeding device for maize. Transactions of the CSAM, 2017, 49(1): 77–85. (in Chinese)
Han B, Guo C, Gao Y L, Liu Q, Sun S, Dong X W. Design and experiment of soybean intra-row weeding monomer mechanism and key components. Transactions of the CSAM, 2020; 51(6): 112–121. (in Chinese)
Niu C L, Wang J W. Paddy strains between weeding member working mechanism and weeding track test. Journal of Agricultural Mechanization Research, 2017; 39(1): 177–181. (in Chinese)
Gobor Z. Mechatronic system for mechanical weed control of the intra-row area in row crops. KI-Künstliche Intelligenz, 2013; 27(4): 379–383.
Wang C, Li Z W. Weed recognition using SVM model with fusion height
and monocular image features. Transactions of the CSAE, 2016; 32(15): 165–174. (in Chinese)
Jia H L, Wang G, Guo M Z, Shah D, Jiang X M, Zhao J L. Methods and experiments of obtaining corn population based on machine vision. Transactions of the CSAM, 2015; 31(3): 215–220. (in Chinese)
Wang Y X, Osman A N, Zhang D X, Yang L, Cui T, Zhong X J. Optimized design and field experiment of a staggered vibrating subsoiler for conservation tillage. Int J Agric & Biol Eng, 2019; 12(1): 59–65.
Han B, Shen J Y, Li Y M. Design and experiment of 3ZCF-7700 multi-functional weeding-cultivating machine. Transactions of the CSAM, 2011; 27(1): 124–129. (in Chinese)
Christian A, Camilla H, Charlotte M, Nina K. Regrowth of weed species after cutting. Weed Technology. 2002; 16(4): 873–879.
Li S S. Design and experiment of seedling avoidable weeding control
device for intertillage maize. Master dissertation. Changchun, China: Jilin University, 2015; 79p.
Wang J F, Wang J W, Yan D W, Tan H, Zhou W Q. Design and experiment of 3scj-2 type row weeding machine for paddy field. Transactions of the CSAM, 2017; 48(6): 71–78. (in Chinese)
Zhang C L, Chen L Q, Xia J F, Zhang J M. Effects of blade sliding cutting angles and stem level on cutting energy of rice stems. Int J Agric & Biol Eng, 2019; 12(6): 75–81.
Chen F E, Liang X M, Chen L H, Liu B Y, Lan Y B. Novel method for real-time detection and tracking of pig body and its different parts. Int J Agric & Biol Eng, 2020; 13(6): 144–149.
Melander B, Lattanzi B, Pannacci E. Intelligent versus non-intelligent mechanical intra-row weed control in transplanted onion and cabbage. Crop Protection, 2015; 72: 1–8.
Copyright (c) 2021 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.