Dynamic ensemble selection of convolutional neural networks and its application in flower classification
Abstract
Keywords: flowers, classification, convolutional neural network, dynamic ensemble selection
DOI: 10.25165/j.ijabe.20221501.6313
Citation: Wang Z B, Wang K Y, Wang X F, Pan S H, Qiao X J. Dynamic ensemble selection of convolutional neural networks and its application in flower classification. Int J Agric & Biol Eng, 2022; 15(1): 216–223.
Keywords
Full Text:
PDFReferences
Han J, Jin C, Wu L. Research on accuracy of flower recognition application based on convolutional neural. Advances in Intelligent Systems and Computing, 2019; 965: 224–232.
Yuan P, Li W, Ren S, Xu H. Recognition for flower type and variety of chrysanthemum with convolutional neural network. Transactions of the CSAE, 2018; 34(5): 152–158. (in Chinese)
Lee H, Hong K. Automatic recognition of flower species in the natural environment. Image and Vision Computing, 2017; 61: 98–114.
Hsu T, Lee C, Chen L. An interactive flower image recognition system. Multimedia Tools and Applications, 2011; 53(1): 53–73.
Guru D S, Kumar Y H S, Manjunath S. Textural features in flower classification. Mathematical and Computer Modelling, 2011; 54: 1030–1036.
Cheng K, Tan X. Sparse representations based attribute learning for flower classification. Neurocomputing, 2014; 145: 416–426.
Soleimanipour A, Chegini G R. A vision-based hybrid approach for identification of Anthurium flower cultivars. Computers and Electronics in Agriculture, 2020; 174: 1–8.
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015; 521: 436–444.
Wang W, Yang Y, Wang X, Wang W, Li J. Development of convolutional neural network and its application in image classification: A survey. Optical Engineering, 2019; 58(4): 1–9.
Khan A, Sohail A, Zahoora U, Qureshi A S. A survey of the recent architectures of deep convolutional neural networks. Artificial Intelligence Review, 2020; 53: 5355–5516.
Cıbuk M, Budak U, Guo Y, Cevdet Ince M, Sengur A. Efficient deep features selections and classification for flower species recognition. Measurement, 2019; 137: 7–13.
Guo B, Hu J, Wu W, Peng Q, Wu F. The Tabu_Genetic algorithm: A novel method for hyper-parameter optimization of learning algorithms. Electronics, 2019; 8(5): 579. doi: 10.3390/electronics800579.
Toğaçar M, Ergen B, Cömert Z. Classification of flower species by using features extracted from the intersection of feature selection methods in convolutional neural network models. Measurement, 2020; 158: 107703. doi: 101016/j.measurement.2020.107703.
Hiary H, Saadeh H, Saadeh M, Yaqub M. Flower classification using deep convolutional neural networks. IET Computer Vision, 2018; 12(6): 855–862.
Mitrovic K, Milosevic D. Flower classification with convolutional neural networks. 23th International Conference on System Theory, Control and Computing. Sinaia: IEEE, 2019; pp.845–850.
Dong X, Yu Z, Cao W, Shi Y, Ma Q. A survey on ensemble learning. Frontiers of Computer Science, 2020; 14: 241–258.
Li J, Wu S, Liu C, Yu Z, Wong H. Semi-supervised deep coupled ensemble learning with classification landmark exploration. IEEE Transactions on Image Processing, 2020; 29: 538–550.
Zvarevashe K, Olugbara O. Ensemble learning of hybrid acoustic features for speech emotion recognition. Algorithms, 2020; 13(3): 70. doi: 10.3390/a13030070.
Yang X, Xu Y, Quan Y, Ji H. Image denoising via sequential ensemble learning. IEEE Transactions on Image Processing, 2020; 29: 5038–5049.
Bae K I, Park J, Lee J, Lee Y, Lim C. Flower classification with modified multimodal convolutional neural networks. Expert System with Applications, 2020; 159: 113455. doi: 10.1016/j.eswa.2020.113455.
Huang B, Hu Y, Sun Y, Hao X, Yan C. A flower classification framework based on ensemble of CNNs. PCM 2018. Lecture Notes in Computer Science, 2018; 11166: 235–244.
Wang Z, Wang K, Wang X, Pan S. A convolutional neural network ensemble for flower image classification. 9th International Conference on Computing and Pattern Recognition. Xiamen: ACM, 2020; pp.225–230.
Li H, Wang X, Ding S. Research and development of neural network ensembles: a survey. Artificial Intelligence Review, 2018; 49(4): 455–479.
Akbari E, Dahlan H M, Ibrahim R, Alizadeh H. Hierarchical cluster ensemble selection. Engineering Applications of Artificial Intelligence, 2015; 39:146–156.
Yin X, Huang K, Hao H. DE2: dynamic ensemble of ensembles for learning nonstationary data. Neurocomputing, 2015; 165: 14–22.
Flower dataset. Available: http://download.tensorflow.org/data/ flowers.tar.gz. Accessed on [2020-02-18].
Subject Database of China Plant. Available: http://www.plant.csdb.cn/photo. Accessed on [2020-02-20].
Howard A G, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, et al. MobileNets: efficient convolutional neural networks for mobile vision applications. 2017; arXiv: 1704.04861.
Yan Y, Yin X C, Wang Z B, Yin X W, Yang C, Hao H W. Sorting-based dynamic classifier ensemble selection. 12th International Conference on Document Analysis and Recognition, Washington: IEEE, 2013; pp.673–677. doi: 10.1109/ICDAR.2013.138.
Cruz R M O, Sabourin R, Cavalcanti G D C. Dynamic classifier selection: recent advances and perspectives. Information Fusion, 2018; 41: 195–216.
Alam K M R, Siddique N, Adeli H. A dynamic ensemble learning algorithm for neural networks. Neural Computing and Applications, 2020; 32: 8675–8690.
Tang E, Suganthan P N, Yao X. An analysis of diversity measures. Machine Learning, 2006; 65(1): 247–271.
Bishop C M. Pattern recognition and machine learning. Springer Science+Business Media, LLC. 2006; 68p.
Liu C. Classifier combination based on confidence transformation. Pattern Recognition, 2005; 38: 11–28.
Luus F, Khan N, Akhalwaya I. Active learning with TensorBoard, 2019; arXiv: 1901.00675.
Chen B, Liu J, Sun J, Liu J. Flowers classification via deep learning models. Available: http://noiselab.ucsd.edu/ECE228/Posters/Group40.pdf. Accessed on [2019-07-25]
Rahman M A, Kuswari A Y. Klasifikasi Jenis Bunga menggunakan SVM dengan Fitur HSV dan HOG. Yukiyu Science. Available: http://eprints.mdp.ac.id/id/eprint/2657. Accessed on [2020-03-16].
Han Y Y, Wang K Y, Liu Z Q, Pan S H, Zhao X Y, et al. Golden seed breeding cloud platform for the management of crop breeding material and genealogical tracking. Computers and Electronics in Agriculture, 2018; 152: 206–214.
Yue Y, Zhao G, Sun R. Breeding data service platform based on the new architecture of cloud technology. 3th Advanced Information Technology, Electronic and Automation Control Conference, Chongqing: IEEE, 2018; pp.1457–1463.
Chen S, Gao H, Li L, Liu Y. An information acquisition and management system for maize breeding. In: 6th IEEE International Conference on Software Engineering and Service Science, Beijing: IEEE, 2015; pp.807–813. doi: 10.1109/ICSESS.2015.7339179.
Han Y Y, Wang K Y, Liu Z Q, Pan S H, Zhao X Y, et al. A crop trait information acquisition system with multitag-based identification technologies for breeding precision management. Computers and Electronics in Agriculture, 2017; 135: 71–80.
Copyright (c) 2022 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.