Identification and mapping of soybean and maize crops based on Sentinel-2 data
Abstract
Keywords: soybean and maize, crop identification, Sentinel-2 data, machine learning, feature selection
DOI: 10.25165/j.ijabe.20201306.6183
Citation: She B, Yang Y Y, Zhao Z G, Huang L S, Liang D, Zhang D Y. Identification and mapping of soybean and maize crops based on Sentinel-2 data. Int J Agric & Biol Eng, 2020; 13(6): 171–182.
Keywords
Full Text:
PDFReferences
Liu X, Rahman T, Song C, Su B Y, Yang F, Yong T, et al. Changes in light environment, morphology, growth and yield of soybean in maize-soybean intercropping systems. Field Crop. Res., 2017; 200: 38–46.
Loy D, Lundy E. In: Sergio O (Ed.). Nutritional properties and feeding value of corn and its coproducts, corn, 3nd Ed. Eagan: AACC International Press, 2019; pp.633–659.
Rebilas K, Klimek-Kopyra A, Bacior M, Zajac T. A model for the yield losses estimation in an early soybean (Glycine max (L.) Merr.) cultivar depending on the cutting height at harvest. Field Crop. Res., 2020; 254: 107846. doi: 10.1016/j.fcr.2020.107846.
Wu F, Geng Y, Zhang Y Q, Ji C X, Chen Y F, Sun L, et al. Assessing sustainability of soybean supply in China: Evidence from provincial production and trade data. J. Clean Prod., 2020; 244: 1–14.
Zhao L C, Shi Y, Liu B, Hovis C, Duan Y L, Shi Z C. Finer classification of crops by fusing UAV images and Sentinel-2A data. Remote Sensing, 2019; 11: 3012. doi: 10.3390/rs11243012.
Huang J X, Hou Y Z, Su W, Liu J M, Zhu D H. Mapping corn and soybean cropped area with GF-1 WFV data. Transaction of the CSAE,
; 33: 164–170. (in Chinese)
Weiss M, Jacob F, Duveiller G. Remote sensing for agricultural applications: A meta-review. Remote Sens. Environ., 2020; 236: 111402. doi: 10.1016/j.rse.2019.111402.
Wang L M, Liu J, Yang L B, Yang F G, Fu C H. Impact of short infrared wave band on identification accuracy of corn and soybean area. Transaction of the CSAE, 2016; 32: 169–178. (in Chinese)
Wang L M, Liu J, Yang L B, Yang F G, Fu C H. Application of random forest method in maize-soybean accurate identification. Acta. Agron. Sin., 2018; 44: 569–580.
Yin L K, You N S, Zhang G L, Huang J X, Dong J W. Optimizing feature selection of individual crop types for improved crop mapping. Remote Sensing, 2020; 12: 1–20.
Sidike P, Sagan V, Maimaitijiang M, Maimaitiyiming M, Shakoor N, Burken J, et al. dPEN: Deep Progressively Expanded Network for mapping heterogeneous agricultural landscape using WorldView-3 satellite imagery. Remote Sens. Environ., 2019; 221: 756–772.
Jin Z N, Azzari G, You C, Di Tommaso S, Aston S, Burke M, et al. Smallholder maize area and yield mapping at national scales with Google Earth Engine. Remote Sens. Environ., 2019; 228: 115–128.
de Souza C H, Mercante E, Johann J A, Lamparelli R A, Uribe-Opazo M A. Mapping and discrimination of soya bean and corn crops using spectro-temporal profiles of vegetation indices. Int. J. Remote Sens., 2015; 36: 1809–1824.
da Silva C A, Nanni M R, Teodoro P E, Silva G F. Vegetation indices for discrimination of soybean areas: A New Approach. Agron. J., 2017; 109: 1331–1343.
Li X, Wang F, Xu D B, Liu Q W. Application research on the method for extracting soybean covered areas based on the pixel unmixing. Transaction of the CSAE, 2008; 24: 213–217.
Sakamoto T, Wardlow B D, Gitelson A A, Verma S B, Suyker A E, Arkebauer T J. A two-step filtering approach for detecting maize and soybean phenology with time-series MODIS data. Remote Sens. Environ., 2010; 114: 2146–2159.
Zhang J H, Feng L L, Yao F M. Improved maize cultivated area estimation over a large scale combining MODIS–EVI time series data and crop phenological information. ISPRS J. Photogramm. Remote Sens., 2014; 94: 102–113.
Gu X H, Han L J, Wang J H, Huang W J, He X. Estimation of maize planting area based on wavelet fusion of multi-resolution images. Transaction of the CSAE, 2012; 28: 203–209. (in Chinese)
Liu X X, Yu L, Zhong L H, Hao P Y, Wu B, Wang H S, et al. Spatial-temporal patterns of features selected using random forests: A case study of corn and soybeans mapping in the US. Int. J. Remote Sens., 2019; 40: 269–283.
Chen Y L, Song X D, Wang S S, Huang J F, Mansaray L R. Impacts of spatial heterogeneity on crop area mapping in Canada using MODIS data. ISPR J. Photogramm. Remote Sens., 2016; 119: 451–461.
Guo W, Zhao C, Gu X, Huang W, Ma Z, Wang H, et al. Remote sensing monitoring of maize planting area at town level. Transaction of the CSAE, 2011; 27: 69–74. (in Chinese)
Hu Q, Sulla D, Xu B D, Yin H, Tang H J, Yang P, et al. A phenology-based spectral and temporal feature selection method for crop mapping from satellite time series. Int. J. Appl. Earth Obs. Geoinf., 2016; 80: 218–229.
Zhong L H, Yu L, Li X C, Hu L N, Gong P. Rapid corn and soybean mapping in US Corn Belt and neighboring areas. Sci. Rep., 2016; 6: 1–14.
Zhong L H, Hu L N, Yu L, Gong P, Biging G S. Automated mapping of soybean and corn using phenology. ISPRS J. Photogramm. Remote Sens., 2016; 119: 151–164.
Grzegozewski D M, Johann J A, Uribe-Opazo M A, Mercante E, Coutinho A C. Mapping soya bean and corn crops in the State of Parana, Brazil, using EVI images from the MODIS sensor. Int. J. Remote Sens., 2016; 37: 1257–1275.
Song X P, Potapov PV, Krylov A, King L, Di Bella C M, Hudson A, et al. National-scale soybean mapping and area estimation in the United States using medium resolution satellite imagery and field survey. Remote Sens. Environ., 2017; 190: 383–395.
Gusso A, Guo W X, Rolim S B. Reflectance-based model for soybean mapping in United States at common land unit scale with Landsat 8. Eur. J. Remote Sens., 2019; 52: 522–531.
Zhang H Y, Kang J Z, Xu X, Zhang L P. Accessing the temporal and
spectral features in crop type mapping using multi-temporal Sentinel-2 imagery: A case study of Yi’an County, Heilongjiang province, China. Comput. Electron. Agric., 2020; 176: 105618. doi: 10.1016/j.compag.2020.105618.
Macintyre, P.; van Niekerk, A.; Mucina, L. Efficacy of multi-season Sentinel-2 imagery for compositional vegetation classification. Int. J. Appl. Earth Obs. Geoinf. 2020, 85, 101980.
Liu L, Xiao X M, Qin Y W, Wang J, Xu X L, Hu Y M, et al. Mapping cropping intensity in China using time series Landsat and Sentinel-2 images and Google Earth Engine. Remote Sens. Environ., 2020; 239: 111624. doi: 10.1016/j.rse.2019.111624.
Drusch M, Del Bello U, Carlier S, Colin O, Fernandez V, Gascon F, et al. Sentinel-2: ESA's optical high-resolution mission for GMES operational services. Remote Sens. Environ., 2012; 120: 25–36.
ESA Introducing Sentinel-2. Available online: http://www.esa.int/ Applications/Observing_the_Earth/Copernicus/Sentinel-2/Introducing_Sentinel-2. Accessed on [2015-12-17].
Delegido J, Verrelst J, Alonso L, Moreno J. Evaluation of Sentinel-2 red-edge bands for empirical estimation of green LAI and Chlorophyll content. Sensors, 2011; 11: 7063–7081.
Wang Y J, Qi Q, Liu Y. Unsupervised segmentation evaluation using area-weighted variance and Jeffries-Matusita distance for remote sensing images. Remote Sensing, 2018; 10: 1193. doi: 10.3390/rs10081193.
Qiu B W, Fan Z L, Zhong M, Tang Z H, Chen C C, Wardlow B D, et al. A new approach for crop identification with wavelet variance and JM distance. Environmental monitoring and assessment, 2014, 186(11): 7929-7940.
Wardlow B D, Egbert S L, Kastens J H. Analysis of time-series MODIS 250 m vegetation index data for crop classification in the US Central Great Plains. Remote Sens. Environ., 2007; 108: 290–310.
Sonobe R, Tani H, Wang X F, Kobayashi N, Shimamura H. Random forest classification of crop type using multi-temporal TerraSAR-X dual-polarimetric data. Remote Sens. Lett., 2014; 5: 157–164.
Cortes C, Vapnik V. Support-Vector Networks. Mach Learn., 1995; 20: 273–297.
Mountrakis G, Im J, Ogole C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Remote Sens., 2011; 66: 247–259.
Naghibi S A, Ahmadi K, Daneshi A. Application of support vector machine, random forest, and genetic algorithm optimized random forest models in groundwater potential mapping. Water Resour. Manag., 2017; 31: 2761–2775.
Foody G M, Mathur A. The use of small training sets containing mixed pixels for accurate hard image classification: Training on mixed spectral responses for classification by a SVM. Remote Sens. Environ., 2006; 103: 179–189.
Rumelhart D E, Hinton G E, Williams R J. Learning representations by back propagating errors. Nature, 1986; 323: 533–536.
Li L Y, Chen Y, Xu T B, Liu R, Shi K F, Huang C. Super-resolution mapping of wetland inundation from remote sensing imagery based on integration of back-propagation neural network and genetic algorithm. Remote Sens. Environ., 2015; 164: 142–154.
Chan J C, Paelinckx D. Evaluation of random forest and adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery. Remote Sens. Environ., 2008; 112: 2999–3011.
Zhang L, Liu Z, Liu D Y, Xiong Q, Yang N, Ren T W, et al. Crop
mapping based on historical samples and new training samples generation in Heilongjiang Province, China. Sustainability, 2019; 11: 5052. doi: 10.3390/su11185052.
Rodriguez-Galiano V F, Chica-Olmo M, Abarca-Hernandez F, Atkinson P M, Jeganathan C. Random Forest classification of Mediterranean land cover using multi-seasonal imagery and multi-seasonal texture. Remote Sens. Environ., 2012; 121: 93–107.
Breiman L. Random Forests. Mach Learn., 2001; 45: 5–32.
Immitzer M, Atzberger C, Koukal T. Tree species classification with random forest using very high spatial resolution 8-band WorldView-2 satellite data. Remote Sens., 2012; 4: 2661–2693.
Díaz-Uriarte R, De Andres S A. Gene selection and classification of microarray data using random forest. BMC Bioinformatics, 2006; 7: 3. doi: 10.1186/1471-2105-7-3.
Congalton R, Green K. Assessing the accuracy of remotely sensed data. Boca Raton: CRC Press, 2019; 200p.
Congalton R G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ., 1991; 37: 35–46.
Liu J, Wang L M, Yang F G, Yao B M, Yang L B. Recognition ability of red edge and short wave infrared spectrum on maize and soybean. Chinese Agricultural Science Bulletin, 2018; 34: 120–129. (in Chinese)
Huete A R, Didan K, Miura T, Rodriguez E P, Gao X, Ferreira L G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ., 2002; 83: 195–213.
Huete A R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ., 1988; 25: 295–309.
Dash J,. Curran P. Evaluation of the MERIS terrestrial chlorophyll index (MTCI). Adv. Space Res., 2007; 39: 100–104.
Guyot G, Baret F, Major D. High spectral resolution: determination of spectral shifts between the red and the near infrared. Int. Arch. Photogramm. Remote Sens., 1988; 11: 750–760.
Rouse J W, Hass R H, Scheel J A, Deering D W. Monitoring vegetation systems in the Great Plain with ERTS. In: Proceedings of the 3rd Earth Resources Technology Satellite-1 Symposium, Washington, DC, USA, 1973; pp. 309–317.
Gitelson A A, Merzlyak M. Remote estimation of chlorophyll content in higher plant leaves. Int. J. Remote Sens., 1997; 18: 2691–2697.
Mcfeeters S K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens., 1996; 17: 1425–1432.
Zha Y, Ni S X, Yang S. An effective approach to automatically extract urban land-use from TM imagery. J. Remote Sens., 2003; 7: 38–40. (in Chinese)
Zheng Y, Zhang M, Zhang X, Zeng H W, Wu B F. Mapping winter wheat biomass and yield using time series data blended from PROBA-V 100- and 300-m S1 products. Remote Sens., 2016; 8: 824. doi: 10.3390/rs8100824.
Immitzer M, Vuolo F, Atzberger C. First experience with Sentinel-2 data for crop and tree species classifications in central Europe. Remote Sens., 2016; 8: 166. doi: 10.3390/rs8030166.
Genuer R, Poggi J, Tuleau-Malot C. Variable selection using random forests. Pattern Recognit. Lett., 2010; 31: 2225–2236.
Kirar J S, Agrawal R K. Relevant frequency band selection using Sequential forward feature selection for motor imagery brain computer interfaces. 2018 IEEE Symposium Series on Computational Intelligence (SSCI), Bangalore: IEEE, 2018; pp.52–59.
Copyright (c) 2020 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.