Low-cost experimental application of real-time kinematic positioning for increasing the benefits in cereal crops
Abstract
Keywords: real-time kinematic, low-cost, positioning, benefits, guidance system, cereal
DOI: 10.25165/j.ijabe.20211403.5812
Citation: Tayebi A, Gomez J, Fernández M, de Adana F S, Gutiérrez O. Low-cost experimental application of real-time kinematic positioning for increasing the benefits in cereal crops. Int J Agric & Biol Eng, 2021; 14(3): 194–199.
Keywords
Full Text:
PDFReferences
Chavas J P. A cost approach to economic analysis under state-contingent production uncertainty. American Journal of Agricultural Economics, 2008; 90(2): 435–446.
Takács-György K, Óbudai E. Economic aspects of an agricultural innovation – precision crop production. In: Applied Studies in Agribusiness and Commerce (APSTRACT). Budapest: Agroinform Publishing House, 2012; pp.51–57. doi: 10.19041/Apstract/2012/1-2/6.
Swinton S M. Economics of site specific weed management. Weed Science, 2005; 53(2): 259–263.
Godwin R J, Richards T E, Wood G A, Welsh J P, Knight S M. An economic analysis of the potential for precision farming in UK cereal production. Biosystems Engineering, 2003; 84(4): 533–545.
Gandonou J M, Dillon C R. Precision timing and spatial allocation of economic fertilizer application. In: South Agricultural Economics Association Annual Meeting, Mobile. Alabama, 2007; 34955.
Lencsés E. Advantages and disadvantages of precision farming technology from economic aspect. Annals of the Polish Association of Agricultural and Agribusiness Economists, 2009; 6: 83–87.
Lencsés E, Takács-György K. Changes in costs of precision nutrition depending on crop rotation. In: Applied Studies in Agribusiness and Commerce (APSTRACT). Budapest: Agroinform Publishing House, 2009; 3(3-4): 59–64. doi: 10.19041/Apstract/2009/3-4/13.
Jongeneel R, Polman N, Slangen L. Cost-benefit analysis of the Dutch nature conservation policy: Direct, indirect effects and transaction costs of the ecological main structure in Netherlands. In: 12th Congress of the European Association of Agricultural Economists (EAAE). Ghent, 2008.
Magda S, Magda R, Marselek S. Sustainable development of the rural economy. In: Applied Studies in Agribusiness and Commerce (APSTRACT). Budapest: Agroinform Publishing House, 2009; 3(5-6): 31–36. doi: 10.19041/Apstract/2009/5-6/5.
Kelc D, Stajnko D, Berk P, Rakun J, Vindiš P, Lakota M. Reduction of environmental pollution by using RTK-navigation in soil cultivation. Int J Agric & Biol Eng, 2019; 12(5): 173–178.
O’Connor A C, Gallaher M P, Clark-Sutton K, Lapidus D, Oliver Z T, Scott T J, et al. Economic benefits of the global positioning system (GPS). RTI International, 2019; Report No. 0215471. doi: 10.13140/ RG.2.2.12336.20487.
Ortiz B, Balkcom K, Duzy L, van Santen E, Hartzog D. Evaluation of agronomic and economic benefits of using RTK-GPS-based auto-steer guidance systems for peanut digging operations. Precision Agriculture, 2013; 14(4): 357–375. doi: 10.1007/s11119-012-9297-y.
Pérez M, Agüera J, Gil J. Desarrollo, evaluación y análisis de técnicas de agricultura de precisión para la optimización de insumos en cultivos característicos del valle del Guadalquivir. Doctoral dissertation. Córdoba: Universidad de Córdoba, 2007; 176p. (in Spanish)
Luck J D, Pitla S K, Shearer S A, Mueller T G, Dillon C R, Fulton J P, et al. Potential for pesticide and nutrient saving via map-based automatic boom section control of spray nozzles. Computers and Electronics in Agriculture, 2010; 70(1): 19–26.
Knight B, Malcolm B. A whole-farm investment analysis of some precision agriculture technologies. In: 51st Annual Conference of the Australasian Agricultural and Resource Economics Society, Queenstown, 2007; 46p.
Precision agriculture: an opportunity for EU farmers- potential support with the CAP 2014-2020. Directorate-general for internal policies. Policy department B. Structural and cohesion policies. European Parliament.
Frascarelli A. Valutazione economica dell’agricoltura di precisione (Economic evaluation of precisión agriculture, in Italian). Agricoltura di Precisione. Metodi e Tecnologie per Migliorare l’Efficienza e la Sostenibilità dei Sistemi Colturali (Precision Agriculture. Methods and Technologies for Improving the Efficiency and Sustainability of Crop Systems, in Italian). Bologna: Edagricole, 2016. pp.213–228. (in Italian)
Knight S, Miller P, Orson J. An up-to-date cost/benefit analysis of precision farming techniques to guide growers of cereals and oilseeds. HGCA Research Review, 2009; 35(6): 2820. doi: 10.1118/1.2962165.
Lawes R A, Robertson M J. Whole farm implications on the application of variable rate technology to every cropped field. Field Crops Research, 2011; 124(2): 142–148.
Batte M T, Reza M. The economics of precision guidance with auto-boom control for farmer-owned agricultural sprayers. Computers and Electronics in Agriculture, 2006; 53(1): 28–44.
Takasu T, Yasuda A. Development of the low-cost RTK-GPS receiver with an open source program package RTKLIB. In: Proceedings of the International Symposium on GPS/GNSS, Jeju, Korea, 2009.
Yin X, Wang Y X, Chen Y L, Jin C Q, Du J. Development of autonomous navigation controller for agricultural vehicles. Int J Agric & Biol Eng, 2020; 13(4): 70–76.
Catania P, Comparetti A, Febo P, Morello G, Orlando S, Roma E, et al. Positioning accuracy comparison of GNSS receivers used for mapping and guidance of agricultural machines. Agronomy, 2020; 10(7): 924. doi: 10.3390/agronomy10070924.
SmartNet HxGN. Available: https://hxgnsmartnet.com/en-gb/. Accessed on [2020-03-21].
Ospina R, Noguchi N. Improved inclination correction method applied to the guidance system of agricultural vehicles. Int J Agric & Biol Eng, 2020; 13(6): 183–194.
Copyright (c) 2021 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.