Design and optimization on rootstock cutting mechanism of grafting robot for cucurbit
Abstract
Keywords: grafting robot, rootstock cavity, cutting angle, matched grafting, parameter optimization, cucurbit
DOI: 10.25165/j.ijabe.20201305.5803
Citation: Jiang K, Zhang Q, Chen L P, Guo W Z, Zheng W G. Design and optimization on rootstock cutting mechanism of grafting robot for cucurbit. Int J Agric & Biol Eng, 2020; 13(5): 117–124.
Keywords
Full Text:
PDFReferences
Pardo-Alonso J L, Carreño-Ortega Á, Martínez-Gaitán C C, Golasi I, Gómez-Galán M. Conventional industrial robotics applied to the process of tomato grafting using the splicing technique. Agronomy, 2019; 9(12): 880. doi: 10.3390/agronomy9120880.
Zhu C Y, Yue D J. Production status and technology trend of vegetable seedling industry in China. Agricultural Engineering Technology, 2019; 39(13): 34–38. (in Chinese)
Liu M C, Ji Y H, Wu Z H, He W M. Current situation and development trend of vegetable seedling industry in China. China Vegetables, 2018; 11: 1–7. (in Chinese)
Huang Y, Kong Q S, Chen F, Bie Z L. The history, current status and future prospects of vegetable grafting in China. Acta Horticulturae, 2015; 1086: 31–39.
Yang Y M, Wang G B. Research on the aging of rural population in China. Shanxi Agricultural Economy, 2018; 2: 1–3. (in Chinese)
Jiang K, Zheng W G, Zhang Q, Guo R, Feng Q C. Development and experiment of vegetable grafting robot. Transactions of the CSAE, 2012; 28(4): 8–14. (in Chinese)
Chen X, Gong Y, Zhang X, Liu D J, Wang, G. Development status of machinery and equipment for watermelon and melon production. China Cucurbits and Vegetables, 2019; 32(8): 65–68. (in Chinese)
Kobayashi K, Sasaya S. Study on automation of seedlings feeding for grafting robot for cucurbitaceous vegetables (Part 2). Agricultural Machinery and Food Engineers, 2007; 69(5): 70–77.
Chiu Y C, Chen S, Chang Y C. Development of a circular grafting robotic system for watermelon seedlings. Appl. Eng. Agric, 2011; 10: 95–102.
Kim H M, Hwang S J. Comparison of pepper grafting efficiency by grafting robot. Protected Horticulture and Plant Factory, 2015; 24(2): 57–62.
Kang D H, Lee S Y, Kim J K, Park M J, Son J K, Yun S W. Development of an automatic grafting robot for fruit vegetables using image recognition. Protected Horticulture and Plant Factory, 2019; 28(4): 322–327.
Ohkoshi T, Kobayashi K. Development of automatic seedling feeding device for cucurbits grafting robot (Part 1)-Evaluation of automatic stock feeder. Journal of the Japanese Society of Agricultural Machinery and Food Engineers, 2013; 75(2): 100–107.
Zhang P, Zhang L N, Liu D, Wu H X, Jiao B. Research status of agricultural robot technology. Agricultural Engineering, 2019; 9(10): 1–12.
Li D D, Shi Y, Li H B, Han W, Duan Y L, Wu W B. Review on the progress of agricultural robot research. China Agricultural Informatics, 2018; 30(6): 1–17. (in Chinese)
Xie Z J, Gu S, Chu Q, Li B, Fan K J, Yang Y L, et al. Development of a high-productivity grafting robot for Solanaceae. Int J Agric & Biol Eng, 2020; 13(1): 82–90.
Zhu C X, Jiang W, Liu W, Wang W, Du J W, Hao L F, et al. Research progress in cucumber grafting seedling raising technology. Journal of Northern Agriculture, 2019; 47(2): 115–118. (in Chinese)
Jiang K. Study on mechanism and experimental device of splice mechanical grafting of cucurbit. PhD dissertation. Harbin: Northeast Agricultural University, 2019; 132p. (in Chinese)
Mu Y H, Gu S, Ma Z Y. Experimental analysis on biomechanical properties of cucurbits. Transactions of the CSAE, 2012; 28(4): 15–20. (in Chinese)
Hassell R L, Memmott F, Liere D G. Grafting Methods for Watermelon Production. Hortscience, 2008; 43(6): 1677–1679.
Zhang L, He H, Wu C Y. Vision method for measuring grafted seedling properties of vegetable grafted robot. Transactions of the CSAE, 2015; 31(9): 32–38. (in Chinese)
Zhang J, Zhao H, Jia J, Zhang C H, Yu C L, Yu Q C. Vision driven prototype system of automatic grafting machine. Journal of Zhejiang Agricultural Sciences, 2018; 59(10): 1763–1766. (in Chinese)
Wang Z L, Cheng X J, You W S. Design of automatic seedling control system for vegetable grafting machine based on machine vision. Journal of Anhui Agricultural Sciences, 2019; 47(7): 218–220. (in Chinese)
He L Y, Cai L Y, Wu C Y. Vision-based parameters extraction of seedlings for grafting robot. Transactions of the CSAE, 2013; 29(24): 190–195. (in Chinese)
Cui Y J, Wang X X, Xu L Q, Chen T, Li S H, Fu L S. Automatic detection for external features of grafting seedlings based on machine vision. Transactions of the CSAM, 2014; 45(4): 89–95. (in Chinese)
Pardo-Alonso J L, Carreño-Ortega Á, Martínez-Gaitán C C, Callejón-Ferre Á J. Combined influence of cutting angle and diameter differences between seedlings on the grafting success of tomato using the splicing technique. Agronomy, 2019; 9(1): 5. doi: 10.3390/agronomy9010005.
Tian S B, Song C C, Dong S, Wang R L. Parameter optimization and experiment for cutting device of muskmelon grafting machine. Transactions of the CSAE, 2016; 32(22): 86–92. (in Chinese)
Jiang K, Zheng W G, Zhang Q, Guo R, Feng Q C. Design and experiment of grafting robot cutting device. Journal of Agricultural Mechanization Research, 2012; 34(2): 76–79, 83.
Copyright (c) 2020 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.