Rheological properties and fractal-rheology analysis of peanut protein isolate suspension
Abstract
Keywords: peanut protein isolate suspension, rheological property, microstructure, fractal analysis
DOI: 10.25165/j.ijabe.20201306.5717
Citation: Bi C H, Chi S Y, Hua Z, Li D, Huang Z G, Liu Y. Rheological properties and fractal-rheology analysis of peanut protein isolate suspension. Int J Agric & Biol Eng, 2020; 13(6): 220–226.
Keywords
Full Text:
PDFReferences
Li M Z, Yao K, Jia D Y, He Q, Lai B L. Functional components and comprehensive utilization of peanut. Chinese oil, 2004; 29(9): 13–15.
Cao K G. Comprehensive utilization of peanut resources. Jiangxi Food Industry, 2002; 1: 15–17.
Liu D C, Zhang W N, Hu X H. Study on preparation and functional properties of peanut protein. Journal of Wuhan Polytechnic University, 2001; 4: 1–4.
Ghatak S K, Sen K. Peanut proteins: applications, ailments and possible remediation. Journal of Industrial and Engineering Chemistry, 2013; 19(2): 369–374.
Zhao X Y, Chen J, Du F L. Potential use of peanut byproducts in food processing: a review. Food Sci. Technol, 2012; 49: 521–529.
Neucere N J, Conkerton E J. Some physicochemical properties of peanut protein isolates. Agric. Food Chem, 1978; 26: 683–686.
Dong X H, Zhao M M, Shi J, Yang Bao, Li J, Luo D H, et al. Effects of combined high pressure homogenization and enzymatic treatment on extraction yield, hydrolysis and function properties of peanut proteins. Innovative Food Science and Emerging Technologies, 2011; 12(4): 478–483.
Fekria A M, Isam A M A, Suha O A, Elfadil E B. Nutritional and functional characterization of defatted seed cake flour of two sudanese groundnut (Arachis hypogaea) cultivars. Int. Food Res, 2012; 19: 629–637.
Hu X, Zhao M M, Li L H, Yang B, Yang X Q, Wang H Y, et al. Emulsifying properties of cross-linking between proteins extracted from cold/hot pressed peanut meal and hydrolysed fish (Decapterus maruadsi) proteins. Int. J. Food Prop, 2014; 17: 1750–1762.
He X H, Liu H Z, Liu L, Hu H, Wang Q. Effects of high pressure on the physicochemical and functional properties of peanut protein isolates. Food Hydrocoll, 2014; 36: 123–129.
Li C, Huang X J, Peng Q, Shan Y Y, Xue F. Physicochemical properties of peanut protein isolate-glucomannan conjugates prepared by ultrasonic treatment. Ultrason Sonochem, 2014; 21: 1722–1727.
Hyun K, Kim S H, Ahn K H, Lee S J. Large amplitude oscillatory shear as a way to classify the complex fluids. Journal of Non-Newtonian Fluid Mechanics, 2002; 107(1-3): 51–65.
Leblanc J L. Non-linear viscoelastic characterization of molten thermoplastic vulcanizates (TPV) through large amplitude harmonic experiments. Rheologica Acta, 2007; 46(80): 1013–1027.
Sun W X, Yang Y R, Wang T, Liu X X, Wang C Y, Tong Z. Large amplitude oscillatory shear rheology for non-linear viscoelasticity in hectorite suspensions containing poly (ethylene glycol). Polymer, 2011; 52(6): 1402–1409.
Hagiwara T, Kumagai H, Nakamura K. Fractal analysis of aggregates formed by heating dilute BSA solutions using light scattering methods. Bioscience, Biotechnology and Biochemistry, 1996; 60(11): 1757–1763.
Hagiwara T, Kumagai H, Matsunaga T, Nakamura K. Analysis of aggregate structure in food protein gels with the concept of fractal. Bioscience, Biotechnology, and Biochemistry, 1997; 61(10): 1663–1667.
Matsumoto T, Kawai M, Masuda T. Viscoelastic and SAXS investigation of fractal structure near the gel point in alginate aqueous systems. Macromolecules, 1992; 25(20): 5430–5433.
Wu H, Xie J J, Lattuada M, Morbidelli M. Scattering structure factor of colloidal gels characterized by static light scattering, small-angle light scattering, and small-angle neutron scattering measurements. Langmuir, 2005; 21(8): 3291–3295.
Bremer L G B, Bijsterbosch B H, Schrijvers R, Vliet V T, Walstra P. On the Fractal Nature of the Structure of Acid Casein Gels. Colloids and Surfaces, 1990; 51: 159–170.
Mellema M, Opheusden V J H J, Vliet V T. Categorization of rheological scaling models for particle gels applied to casein gels. Journal of Rheology, 2002; 46(1): 11–29.
Shih W H, Shih W Y, Kim S I, Liu J, Aksay I A. Scaling behavior of the elastic properties of colloidal gels. Physical Review A, 1990; 42(8): 4772–4779.
Wilhelm M, Maring D, Spiess H W. Fourier-transform rheology. Rheologica Acta, 1998; 37(4): 399–405.
Wu H, Morbidelli M. A model relating structure of colloidal gels to their elastic properties. Langmuir, 2001; 17(4): 1030–1036.
Le Grand A, Petekidis G. Effects of particle softness on the rheology and yielding of colloidal glasses. Rheologica Acta, 2008; 47(5-6): 579–590.
Bi C H, Li D, Wang L J, Gao F, Adhikari B. Effect of high shear homogenization on rheology, microstructure and fractal dimension of acidinduced SPI gels. Journal of Food Engineering, 2014; 126: 48–55.
Vicsek T. Fractal growth phenomena (Vol. 4). Singapore: World Scientific, 1989.
Bi C H, Li D, Wang L J, Wang Y, Adhikari B. Characterization of nonlinear rheological behavior of SPIeFG dispersions using LAOS tests and FT rheology. Carbohydrate Polymers, 2013; 92(2): 1151–1158.
Bi C H, Wang L, Li D, Huang Z G, Adhikari B, Chen X D. Non-linear rheological properties of soy protein isolate dispersions and acid-induced gels. International Journal of Food Engineering, 2017; 13(5).
Copyright (c) 2020 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.