Performance of a zero-inertia model for irrigation with rapidly varied inflow discharges
Abstract
Keywords: zero-inertia model, rapidly varied inflow, border irrigation, sensitivity analysis
DOI: 10.25165/j.ijabe.20201302.5228
Citation: Liu K H, Jiao X Y, Li J, An Y H, Guo W H, Salahou M K, et al. Performance of a zero-inertia model for irrigation with rapidly varied inflow discharges. Int J Agric & Biol Eng, 2020; 13(2): 175–181.
Keywords
Full Text:
PDFReferences
Mcclymont D. Development of a decision support system for furrow and border irrigation. PhD dissertation. University of Southern Queensland, Toowoomba, Australia, 2007.
Dholakia M, Misra R, Zaman M S. Simulation of border irrigation system using explicit maccormack finite difference method. Agric. Water Manage., 1998; 36(3): 181–200.
Gillies M H, Smith R J. SISCO: Surface irrigation simulation, calibration and optimisation. Irrig. Sci., 2015; 33(5): 339–355.
Barros R M, Tiago Filho G L, dos Santos I F S, Silva F G B D. Case studies for solving the Saint-Venant equations using the method of characteristics: Pipeline hydraulic transients and discharge propagation. 27th IAHR Symposium on Hydraulic Machinery and Systems; SEP 22-26; Montreal, Canada. IOP Conference Series-Earth and Environmental Science. Desy N., Deschenes C., Guibault F., Page M., Turgeon M. and Giroux A.M., ed., 2015; p. 55–62.
Hauke G. A stabilized finite element method for the saint‐Venant equations with application to irrigation. Int. J. Numer. Meth. Fl., 2002; 38(10): 963–984.
Bradford S F, Katopodes N D. Finite volume model for nonlevel basin irrigation. J. Irrig. Drain. Eng., 2001; 127(4): 216–223.
Strelkoff T, Clemmens A J. Hydraulics of surface systems. In: Hoffman G J, Evans R G, Jensen M E, Martin D L, Elliot R L, editors. Design and operation of farm irrigation systems, 2nd Ed., ASABE, St. Joseph (MO),
; p. 436–498.
Strelkoff T, Katopodes N D. Border irrigation hydraulics with zero-inertia. J. Irrig. Drain. Div., 1977; 110(3): 325–342.
Strelkoff T, Falvey H. Numerical methods used to model unsteady canal flow. J. Irrig. Drain. Eng., 1993; 119(4): 637–655.
Valipour M. Comparison of surface irrigation simulation models: Full hydrodynamic, zero inertia, kinematic wave. Journal of Agricultural Science, 2012; 4(12): 68–74.
Walker W R, Humpherys A S. Kinematic-wave furrow irrigation model. J. Irrig. Drain. Eng., 1983; 109(4): 377–392.
Valiantzas J D. Volume balance irrigation advance equation: variation of surface shape factor. J. Irrig. Drain. Eng., 1998; 123(4): 307–312.
Mahdizadeh Khasraghi M, Gholami Sefidkouhi M A, Valipour M. Simulation of open- and closed-end border irrigation systems using SIRMOD. Arch. Agron. Soil Sci., 2015; 61(7): 929–941.
Katopodes N D, Tang J H. Self-adaptive control of surface irrigation advance. J. Irrig. Drain. Eng., 1990; 116(5): 697–713.
Han D. Concise Hydraulics. 2008. https://bookboon.com/en/ conceise-hydroulics-ebook. Accessed on [2019-05-16]
Szydtowski M, Zima P. Two-dimensional vertical reynolds-averaged navier-stokes equations versus one-dimensional saint-venant model for rapidly varied open channel water flow modeling. Archives of Hydroengineering and Environmental Mechanics, 2006; 53(4): 295–309.
Wang W. Spatial variability of influencing factors on border irrigation and robust design on irrigation technical parameters. PhD dissertation. Nanjing: Hohai University, 2009. (in Chinese).
Morris M R, Hussain A, Gillies M H, O’Halloran N J. Inflow rate and border irrigation performance. Agric. Water Manage., 2015; 155: 76–86.
Salahou M K, Jiao X, Lü H. Border irrigation performance with distance-based cut-off. Agric. Water Manage., 2018; 201: 27–37.
Walker W R, Skogerboe G. Surface Irrigation: Theory and practice. Englewood Cliffs (NJ): Prentice-Hall Inc., 1987.
Akbari M, Gheysari M, Mostafazadeh-Fard B, Shayannejad M. Surface irrigation simulation-optimization model based on meta-heuristic algorithms. Agric. Water Manage, 2018; 201: 46–57.
Zhang S, Xu D, Li Y. A one-dimensional complete hydrodynamic model of border irrigation based on a hybrid numerical method. Irrig Sci., 2011; 29(2): 93–102.
Cai H, Xu J, Wang J, Chen X, Zhu D, Xie F. Yearly variation of soil infiltration parameters in irrigated field based on WinSRFR4.1. Transactions of the CSAE, 2016; 32(2): 92–98. (in Chinese).
Sayari S, Rahimpour M, Zounemat-Kermani M. Numerical modeling based on a finite element method for simulation of flow in furrow irrigation. Paddy and Water Environment, 2017; 15(4): 879–887.
Valiantzas J D, Aggelides S, Sassalou A. Furrow infiltration estimation from time to a single advance point. Agric. Water Manage., 2001; 52(1): 17–32.
Lalehzari R, Nasab S B. Improved volume balance using upstream flow depth for advance time estimation. Agric. Water Manage., 2017; 186: 120–126.
Maheshwari B L, McMahon T A, Turner A K. Sensitivity analysis of parameters of border irrigation models. Agric. Water Manage., 1990; 18(4): 277–287.
Copyright (c) 2020 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.