Research and development in agricultural robotics: A perspective of digital farming

Redmond Ramin Shamshiri, Cornelia Weltzien, Ibrahim A. Hameed, Ian J. Yule, Tony E. Grift, Siva K. Balasundram, Lenka Pitonakova, Desa Ahmad, Girish Chowdhary

Abstract


Digital farming is the practice of modern technologies such as sensors, robotics, and data analysis for shifting from tedious operations to continuously automated processes. This paper reviews some of the latest achievements in agricultural robotics, specifically those that are used for autonomous weed control, field scouting, and harvesting. Object identification, task planning algorithms, digitalization and optimization of sensors are highlighted as some of the facing challenges in the context of digital farming. The concepts of multi-robots, human-robot collaboration, and environment reconstruction from aerial images and ground-based sensors for the creation of virtual farms were highlighted as some of the gateways of digital farming. It was shown that one of the trends and research focuses in agricultural field robotics is towards building a swarm of small scale robots and drones that collaborate together to optimize farming inputs and reveal denied or concealed information. For the case of robotic harvesting, an autonomous framework with several simple axis manipulators can be faster and more efficient than the currently adapted professional expensive manipulators. While robots are becoming the inseparable parts of the modern farms, our conclusion is that it is not realistic to expect an entirely automated farming system in the future.
Keywords: agricultural robotics, precision agriculture, virtual orchards, digital agriculture, simulation software, multi-robots
DOI: 10.25165/j.ijabe.20181104.4278

Citation: Shamshiri R R, Weltzien C, Hameed I A, Yule I J, Grift T E, Balasundram S K, et al. Research and development in agricultural robotics: A perspective of digital farming. Int J Agric & Biol Eng, 2018; 11(4): 1–14.

Keywords


agricultural robotics, precision agriculture, virtual orchards, digital agriculture, simulation software, multi-robots

Full Text:

PDF

References


King A. Technology: The Future of Agriculture. Nature, 2017; 544: S21.

Wolfert S, Ge L, Verdouw C, Bogaardt M J. Big data in smart farming – A review. Agric. Syst., 2017; 153: 69–80.

Chlingaryan A, Sukkarieh S, Whelan B. Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review. Comput. Electron. Agric, 2018; 151: 61–69.

Bechar A & Vigneault C. Agricultural robots for field operations: Concepts and components. Biosystems Engineering, 2016; 149: 94-111.

Oberti R, Marchi M, Tirelli P, Calcante A, Iriti M, Tona E, et al. Selective spraying of grapevines for disease control using a modular agricultural robot. Biosyst. Eng, 2016; 146: 203–215.

Bloch V, Degani A, Bechar A, A methodology of orchard architecture design for an optimal harvesting robot. Biosyst. Eng. 2018; 166: 126–137.

Shamshiri R R, Hameed I A, Karkee M, Weltzien C. Robotic harvesting of fruiting vegetables: A simulation approach in V-REP, ROS and MATLAB. Proceedings in Automation in Agriculture-Securing Food Supplies for Future Generations, 2018, InTech.

Eizicovits D, van Tuijl B, Berman S, Edan Y. Integration of perception capabilities in gripper design using graspability maps. Biosyst. Eng., 2016; 146: 98–113.

Longo D, Muscato G. Design and simulation of two robotic systems for automatic artichoke harvesting. Robotics, 2013; 2(4): 217–230.

Barth R, Hemming J, van Henten E J. Design of an eye-in-hand sensing and servo control framework for harvesting robotics in dense vegetation. Biosyst. Eng. 2016; 146: 71–84.

Gonzalez-de-Soto M, Emmi L, Perez-Ruiz M, Aguera J, Gonzalez-de-Santos P. Autonomous systems for precise spraying – Evaluation of a robotised patch sprayer. Biosyst. Eng., 2016; 146: 165–182.

Adamides G, Katsanos C, Parmet Y, Christou G, Xenos M, Hadzilacos T, et al. HRI usability evaluation of interaction modes for a teleoperated agricultural robotic sprayer. Appl. Ergon. 2017; 62: 237–246.

Ishigure Y, Hirai K, Kawasaki H. A pruning robot with a power-saving chainsaw drive. in Mechatronics and Automation (ICMA), 2013 IEEE International Conference on, 2013; pp.1223–1228.

Kawasaki H, Murakami S, Kachi H, Ueki S. Novel climbing method of pruning robot. in SICE Annual Conference, 2008; pp.160–163.

Drach U, Halachmi I, Pnini T, Izhaki I. Degani A. Automatic herding reduces labour and increases milking frequency in robotic milking. Biosyst. Eng., 2017; 155: 134–141.

Bach A and Cabrera V. Robotic milking: Feeding strategies and economic returns. J. Dairy Sci., 2017; 100(9): 7720–7728.

Zhang C, Gao H, Zhou J, Cousins A, Pumphrey M. O, Sankaran S. 3D robotic system development for high-throughput crop phenotyping. IFAC-PapersOnLine, 2016; 49(16): 242–247.

Ruckelshausen A, Biber P, Dorna M, Gremmes H, Klose R, Linz A, et al. BoniRob–an autonomous field robot platform for individual plant phenotyping. Precis. Agric. 2009; 9(841): 1.

Comba L, Gay P, Ricauda Aimonino D. Robot ensembles for grafting herbaceous crops. Biosyst. Eng., 2016; 146: 227–239.

De Baerdemaeker J, Munack A, Ramon H, Speckmann H. Mechatronic systems, communication, and control in precision agriculture. IEEE Control Syst, 2001; 21(5): 48–70.

Shamshiri R R, Kalantari F, Ting K C, Thorp K R, Hameed I A, Weltzien C, et al. Advances in greenhouse automation and controlled environment agriculture: A transition to plant factories and urban agriculture. Int J Agric & Biol Eng, 2018; 11(1): 1–22.

Sammons P J, Furukawa T, Bulgin A. Autonomous pesticide spraying robot for use in a greenhouse. Proceedings in Australian Conference on Robotics and Automation, 2005; pp.1–9.

Van Henten E J, Van Tuijl B A J, Hoogakker G J, Van Der Weerd M J, Hemming J, Kornet J G, Bontsema, J. An autonomous robot for de-leafing cucumber plants grown in a high-wire cultivation system. Biosyst. Eng., 2006; 94 (3): 317–323.

Billingsley J, Visala A, Dunn M. Robotics in agriculture and forestry. in Springer handbook of robotics, Springer, 2008; 1065–1077.

Hemming J, Bac W, van Tuijl B, Barth R, Bontsema J, Pekkeriet E, van Henten E. A robot for harvesting sweet-pepper in greenhouses. Proc. Int. Conf. Agric. Eng. 2014; 6–10.

Hemming J, Bontsema J, Bac W, Edan Y, van Tuijl B, Barth R, Pekkeriet E. Final Report: Sweet-Pepper Harvesting Robot”. Report to the European Commission in the 7th Framework Programme. 2014.

Bac C W, Hemming J, Van Henten E J. Robust pixel-based classification of obstacles for robotic harvesting of sweet-pepper. Comput. Electron. Agric., 2013; 96: 148–162.

Lehnert C, English A, McCool C, Tow A W, Perez T. Autonomous sweet pepper harvesting for protected cropping systems. IEEE Robot. Autom. Lett., 2017; 2(2): 872–879.

Shamshiri R, Ishak W, Ismail W. Nonlinear tracking control of a two link oil palm harvesting robot manipulator. Int J Agric & Biol Eng, 2012; 5(2): 1–11.

Ishak W, Ismail W. Research and Development of Oil Palm Harvester Robot at Universiti Putra Malaysia. Int J Eng Technol, 2010; 7(2): 87–94.

Jayaselan H A J, Ismail W I W. Kinematics analysis for five DOF Fresh Fruit Bunch harvester. Int J Agric & Biol Eng, 2010; 3(3): 1–7.

Stein M, Bargoti S, Underwood J. Image based mango fruit detection, localisation and yield estimation using multiple view geometry. Sensors, 2016; 16(11): 1915.

Van Henten E J, Hemming J, Van Tuijl B A J, Kornet J G, Meuleman J, Bontsema J, Van Os E A. An autonomous robot for harvesting cucumbers in greenhouses. Autonomous Robots, 2002; 13(3): 241-258.

Tang X, Zhang T, Liu L, Xiao D, Chen Y. A new robot system for harvesting cucumber. Proceedings in American Society of Agricultural and Biological Engineers Annual International Meeting, 2009; pp.3873–3885.

van Henten E J, van Tuijl B A J, Hemming J, Kornet J G, Bontsema J, Van Os E A. Field test of an autonomous cucumber picking robot. Biosyst. Eng., 2003; 86(3): 305–313.

Van Henten E J, Hemming J, Van Tuijl B A J, Kornet J G, Bontsema J. Collision-free motion planning for a cucumber picking robot. Biosyst. Eng., 2003; 86(2): 135–144.

van Henten E J, Schenk E J, van Willigenburg L G, Meuleman J, Barreiro P. Collision-free inverse kinematics of the redundant seven-link manipulator used in a cucumber picking robot. Biosyst. Eng., 2010; 106(2): 112–124.

Van Henten E J, Van’t Slot D A, Hol C W J, Van Willigenburg L G. Optimal manipulator design for a cucumber harvesting robot. Comput. Electron. Agric., 2009; 65(2): 247–257.

Underwood J P, Hung C, Whelan B, Sukkarieh S. Mapping almond orchard canopy volume, flowers, fruit and yield using LiDAR and vision sensors. Comput. Electron. Agric., 2016; 130: 83–96.

Underwood J P, Jagbrant G, Nieto J I, Sukkarieh S. Lidar-based tree recognition and platform localization in orchards. J. F. Robot., 2015; 32(8): 1056–1074.

Thanh N T, Vandevoorde K, Wouters N, Kayacan E, de Baerdemaeker J G, Saeys W. Detection of red and bicoloured apples on tree with an RGB-D camera. Biosyst. Eng., 2016; 146: 33–44.

Bargoti S, Underwood J P. Image segmentation for fruit detection and yield estimation in apple orchards. J. F. Robot, 2017; 34(6): 1039–1060.

Jia W, Zheng Y, Zhao D, Yin X, Liu X, Du R. Preprocessing method of night vision image application in apple harvesting robot. Int J Agric & Biol Eng, 2018; 11(2): 158–163.

Han K S, Kim S C, Lee Y B, Kim S C, Im D H, Choi H K, et al. Strawberry harvesting robot for bench-type cultivation. Biosyst. Eng. 2012; 37(1): 65–74,.

Feng Q, Wang X, Zheng W, Qiu Q, Jiang K. New strawberry harvesting robot for elevated-trough culture. Int J Agric & Biol Eng, 2012; 5(2): 1–8.

Hayashi S, Shigematsu K, Yamamoto S, Kobayashi K, Kohno Y, Kamata J, et al. Evaluation of a strawberry-harvesting robot in a field test. Biosyst. Eng., 2010; 105(2): 160–171.

Tanigaki K, Fujiura T, Akase A, Imagawa J. Cherry-harvesting robot. Comput. Electron. Agric., 2008; 63(1): 65–72.

Mehta S S, Burks T F. Vision-based control of robotic manipulator for citrus harvesting. Comput. Electron. Agric., 2014; 102: 146–158.

Mehta S S, MacKunis W, Burks T F. Robust visual servo control in the presence of fruit motion for robotic citrus harvesting. Comput. Electron. Agric., 2016; 123: 362–375.

Lu Q, Cai J R, Liu B, Lie D, Zhang Y J. Identification of fruit and branch in natural scenes for citrus harvesting robot using machine vision and support vector machine. Int. J. Agric. Biol. Eng. 2014; 7(2): 115–121.

Zaidner G, Shapiro A. A novel data fusion algorithm for low-cost localisation and navigation of autonomous vineyard sprayer robots. Biosyst. Eng., 2016; 146: 133–148.

Nuske S, Wilshusen K, Achar S, Yoder L, Narasimhan S, Singh S. Automated visual yield estimation in vineyards. J. F. Robot, 2014; 31(5) 837–860.

Nuske S, Gupta K, Narasimhan S, Singh S. Modeling and calibrating visual yield estimates in vineyards. In Field and Service Robotics. Springer, Berlin, Heidelberg, 2014; pp.343–356.

Senthilnath J, Dokania A, Kandukuri M, Ramesh K N, Anand G, Omkar S N. Detection of tomatoes using spectral-spatial methods in remotely sensed RGB images captured by UAV. Biosyst. Eng., 2016; 146: 16–32.

Feng Q C, Zou W, Fan P F, Zhang C F, Wang X. Design and test of robotic harvesting system for cherry tomato. Int J Agric & Biol Eng, 2018; 11(1): 96–100.

Feng Q C, Cheng W, Zhou J J, Wang X. Design of structured-light vision system for tomato harvesting robot. Int J Agric & Biol Eng, 2014; 7(2): 19–26.

Wang L L, Zhao B, Fan J W, Hu X A, Wei S, Li Y S, et al. Development of a tomato harvesting robot used in greenhouse. Int J Agric & Biol Eng, 2017; 10(4): 140–149.

Hung C, Underwood J, Nieto J, Sukkarieh S. A feature learning based approach for automated fruit yield estimation. In Field and Service Robotics. Springer, Cham, 2015; pp.485–498.

Lopes C M, Graça J, Sastre J, Reyes M, Guzmán R, Braga R, et al. Vineyard yeld estimation by VINBOT robot-preliminary results with the white variety Viosinho. Proceedings of 11th Int. Terroir Congress. Jones, G. and Doran, N. (eds.), Southern Oregon University, Ashland, USA. 2016; pp.458-463.

Lee Y J, Kwon T B, Song J B. SLAM of a mobile robot using thinning-based topological information. Int. J. Control. Autom. Syst., 2007; 5(5): 577–583.

Li N, Zhang C L, Chen Z W, Ma Z H, Sun Z, Yuan T, et al. Crop positioning for robotic intra-row weeding based on machine vision. Int J Agric & Biol Eng, 2015; 8(6): 20–29.

Ghazali K. H, Razali S, Mustafa M M, Hussain A. Machine Vision System for Automatic Weeding Strategy in Oil Palm Plantation using Image Filtering Technique. 2008 3rd Int. Conf. Inf. Commun. Technol. From Theory to Appl, 2008; pp.1–5.

Chen B, Tojo S, Watanabe K. Machine vision for a micro weeding robot in a paddy field. Biosyst. Eng., 2003; 85(4): 393–404.

Bakker T, Bontsema J, Müller J. Systematic design of an autonomous platform for robotic weeding. J. Terramechanics, 2010; 47(2): 63–7.

Hu J, Yan X, Ma J, Qi C, Francis K, Mao H. Dimensional synthesis and kinematics simulation of a high-speed plug seedling transplanting robot. Comput. Electron. Agric., 2014; 107: 64–72.

Ryu K H, Kim G, Han J S. AE—Automation and emerging technologies: development of a robotic transplanter for bedding plants. J. Agric. Eng. Res., 2001; 78(2): 141–146.

Huang Y J, Lee F F. An automatic machine vision-guided grasping system for Phalaenopsis tissue culture plantlets. Comput. Electron. Agric., 2010; 70(1): 42–51.

Yang Q, Chang C, Bao G, Fan J, Xun Y. Recognition and localization system of the robot for harvesting Hangzhou White Chrysanthemums. Int J Agric & Biol Eng, 2018; 11(1): 88–95.

Weiss U and Biber P. Plant detection and mapping for agricultural robots using a 3D LIDAR sensor. Rob. Auton. Syst. 2011; 59(5): 265–273.

Shamshiri R and Wan Ismail W I. Design and Simulation of Control Systems for a Field Survey Mobile Robot Platform. Res. J. Appl. Sci. Eng. Technol., 2013; 6(13): 2307–2315.

Cariou C, Lenain R, Thuilot B, Berducat M. Automatic guidance of a four‐wheel‐steering mobile robot for accurate field operations. J. F. Robot. 2009; 26(6-7): 504–518.

English A, Ross P, Ball D, Corke P. Vision based guidance for robot navigation in agriculture. in Robotics and Automation (ICRA), 2014 IEEE International Conference on, 2014; 1693–1698.

Bak T and Jakobsen H. Agricultural robotic platform with four wheel steering for weed detection. Biosyst. Eng. 2004; 87(2): 125–136.

Yin X, Noguchi N. Development and evaluation of a general-purpose electric off-road robot based on agricultural navigation. Int J Agric & Biol Eng, 2014; 7(5): 14–21.

Qi H X, Banhazi T M, Zhang Z G, Low T, Brookshaw I J. Preliminary laboratory test on navigation accuracy of an autonomous robot for measuring air quality in livestock buildings. Int J Agric & Biol Eng, 2016; 9(2): 29–39.

Hellström T, Ringdahl O. A software framework for agricultural and forestry robots. Industrial Robot: An International Journal, 2013; 40(1): 20–26.

Jensen K, Larsen M, Nielsen S H, Larsen L B, Olsen K S, Jørgensen R N. Towards an open software platform for field robots in precision agriculture. Robotics, 2014; 3(2): 207–234.

Rohmer E, Singh S P N, Freese M. V-REP: A versatile and scalable robot simulation framework. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2013; pp.1321–1326.

Quigley M, Conley K, Gerkey B, Faust J, Foote T, Leibs J, et al. ROS: an open-source Robot Operating System. In ICRA workshop on open source software, 2009; 3(2): 5.

Lippiello V. Multi–object and multi–camera robotic visual servoing. PhD thesis, Scuola di Dottorato di ricerca in Ingegneria dell’Informazione, Università degli studi di Napoli Federico II, 2003.

Mehta S S, Jayaraman V, Burks T F, Dixon W E. Teach by zooming: A unified approach to visual servo control. Mechatronics, 2012; 22(4): 436–443.

Barth R, Hemming J, van Henten E J. Design of an eye-in-hand sensing and servo control framework for harvesting robotics in dense vegetation. Biosyst. Eng., 2016; 146: 71–84.

Zhao D A, Lv J D, Ji W, Zhang Y, Chen Y. Design and control of an apple harvesting robot. Biosyst. Eng., 2011; 110(2): 112–122.

Li Z, Li P, Yang H, Wang Y. Stability tests of two-finger tomato grasping for harvesting robots. Biosyst. Eng., 2013; 116(2): 163–170.

Bac C W, Roorda T, Reshef R, Berman S, Hemming J, van Henten E J. Analysis of a motion planning problem for sweet-pepper harvesting in a dense obstacle environment. Biosyst. Eng., 2016; 146: 85–97.

Zhao Y, Gong L, Huang Y, Liu C. A review of key techniques of vision-based control for harvesting robot. Comput. Electron. Agric., 2016; 127: 311–323.

Choi D, Lee W S, Ehsani R, Roka F M. A Machine Vision System for Quantification of Citrus Fruit Dropped on the Ground under the Canopy. Trans. ASABE, 2015; 58(4): 933–946.

Sandini G, Buemi F, Massa M, Zucchini M. Visually guided operations in green-houses. IEEE International Workshop on Intelligent Robots and Systems (IROS’90’), 1990; pp.279–285.

Dario P, Sandini G, Allotta B, Bucci A, Buemi F, Massa M, et al. The Agrobot project for greenhouse automation. International Symposium on New Cultivation Systems in Greenhouse, 1993; 361: 85–92.

Monta M, Kondo N, Ting K C. End-effectors for tomato harvesting robot. in Artificial Intelligence for Biology and Agriculture, Springer, 1998; pp.1–25.

Bechar A. ScienceDirect agricultural robots for field operations . Part 2 : Operations and Systems, Vol. 3, 2016.

Hameed I A, la Cour-Harbo A, Osen O L. Side-to-side 3D coverage path planning approach for agricultural robots to minimize skip/overlap areas between swaths. Rob. Auton. Syst., 2016; 76: 36–45.

Hameed I A. Intelligent coverage path planning for agricultural robots and autonomous machines on three-dimensional terrain. J. Intell. Robot. Syst., 2014; 74(3-4): 965–983.

Hameed I A, Bochtis D D, Sorensen C G. Driving angle and track sequence optimization for operational path planning using genetic algorithms. Appl. Eng. Agric., 2011; 27(6): 1077–1086.

Tillett N D. Automatic guidance sensors for agricultural field machines: a review. J. Agric. Eng. Res., 1991; 50: 167–187.

Noguchi N, Ishii K, Terao H. Development of an agricultural mobile robot using a geomagnetic direction sensor and image sensors. J. Agric. Eng. Res., 1997; 67(1): 1–15.

Noguchi N, Terao H. Path planning of an agricultural mobile robot by neural network and genetic algorithm. Comput. Electron. Agric., 1997; 18(2-3): 187–204.

Åstrand B and Baerveldt A J. An agricultural mobile robot with vision-based perception for mechanical weed control. Auton. Robots. 2002; 13(1): 21–35.

Hopkins M. Automating in the 21st century career and technical education. Greenh. Grow, 2000; pp. 4–12.

Pilarski T, Happold M, Pangels H, Ollis M, Fitzpatrick K, Stentz A. The demeter system for automated harvesting. Auton. Robots, 2002; 13(1): 9–20.

Sezen B. Modeling automated guided vehicle systems in material handling. Dogus Oniversiiesi Dergisi, 2003; 4(2): 207-216.

Shamshiri R, Ismail W I W. A review of greenhouse climate control and automation systems in tropical regions. J. Agric. Sci. Appl., 2013; 2(3): 176–183.

Bac C W, Roorda T, Reshef R, Berman S, Hemming J, van Henten E J. Analysis of a motion planning problem for sweet-pepper harvesting in a dense obstacle environment. Biosyst. Eng., 2016; 146: 85–97.

Young S L, Giles D K. Targeted and microdose chemical applications. in automation: The future of weed control in cropping systems. Springer, 2014; pp.139–147.

Midtiby H S, Mathiassen S K, Andersson K J, Jørgensen R N. Performance evaluation of a crop/weed discriminating microsprayer. Comput. Electron. Agric., 2011; 77(1): 35–40,.

Sander S. BoniRob: An Autonomous Mobile Platform for Agricultural Applications, 2015. Available at: http://www.fieldrobot.com/ieeeras/ Downloads/20150923-Sander-Presentation.pdf.

Bawden O, Ball D, Kulk J, Perez T, Russell R. A lightweight, modular robotic vehicle for the sustainable intensification of agriculture. Australian Robotics & Automation Association ARAA, 2014.

Ruckelshausen A, Klose R, Linz A, Marquering J, Thiel M, Tölke S. Autonome Roboter zur Unkrautbekämpfung. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz, 2006; pp.173–180.

MacKean R, Jones J L, Francis Jr J T. Weeding robot and method. Google Patents, 24-Aug-2017.

Jørgensen R N, Sørensen C G, Maagaard J, Havn I, Jensen K, Søgaard H T, et al. Hortibot: A system design of a robotic tool carrier for high-tech plant nursing. CIGR Ejournal, Vol. IX, No.1, Manuscript ATOE 07 006, 2007.

Green O, Schmidt T, Pietrzkowski R P, Jensen K, Larsen M, Jørgensen R N. Commercial autonomous agricultural platform: Kongskilde Robotti. Second International Conference on Robotics and associated High-technologies and Equipment for Agriculture and Forestry, 2014; pp.351–356.

Bogue R. Robots poised to revolutionise agriculture. Ind. Rob., 2016; 43(5): 450–456.

Lamm R. D, Slaughter D C, Giles D K. Precision weed control system for cotton. Trans. ASAE, 2002; 45(1): 231.

Lee W S, Slaughter D C, Giles D K. Robotic weed control system for tomatoes. Precis. Agric., 1999; 1(1): 95–113.

Burks T F, Subramanian V, Singh S. Autonomous greenhouse sprayer vehicle using machine vision and ladar for steering control. Proceedings of the 2004 Conference on Automation Technology for Off-Road Equipment, 2004; 79p.

Subramanian V. Autonomous vehicle guidance using machine vision and laser radar for agricultural applications. Doctoral dissertation. University of Florida, 2005.

Ollero A, Mandow A, Muñoz V F, De Gabriel J G. Control architecture for mobile robot operation and navigation. Robot. Comput. Integr. Manuf., 1994; 11(4): 259–269.

Mandow A, Gomez-de-Gabriel J M, Martinez J L, Munoz V F, Ollero A, Garcia-Cerezo A. The autonomous mobile robot AURORA for greenhouse operation. IEEE Robot. Autom. Mag., 1996; 3(4): 18–28.

Martínez J L, Mandow A, Morales J, Pedraza S, García-Cerezo A. Approximating kinematics for tracked mobile robots. Int. J. Rob. Res., 2005; 24(10): 867–878.

Kiani S, Jafari A. Crop detection and positioning in the field using discriminant analysis and neural networks based on shape features. J. Agr. Sci. Tech, 2012; 14: 755-765.

Perez A J, Lopez F, Benlloch J V, Christensen S. Colour and shape analysis techniques for weed detection in cereal fields. Comput. Electron. Agric., 2000; 25(3): 197–212.

Cho S, Lee D S, Jeong J Y. AE—automation and emerging technologies: Weed–plant discrimination by machine vision and artificial neural network. Biosyst. Eng., 2002; 83(3): 275–280.

Jafari A, Mohtasebi S S, Jahromi H E, Omid M. Weed detection in sugar beet fields using machine vision. Int. J. Agric. Biol, 2006; 8(5): 602–605.

Huang M, He Y. Crop and weed image recognition by morphological operations and ANN model. Proceedings of IEEE Conference on Instrumentation and Measurement Technology (IMTC 2007), 2007; pp.1–4.

Meyer G E, Mehta T, Kocher M F, Mortensen D A, Samal A. Textural imaging and discriminant analysis for distinguishingweeds for spot spraying. Trans. ASAE, 1998; 41(4): 1189–1197.

Polder G, van Evert F K, Lamaker A, de Jong A, Van der Heijden G, Lotz L A P, et al. Weed detection using textural image analysis. EFITA/ WCCA Conference, 2007.

Zhu B, Jiang L, Luo Y, Tao Y. Gabor feature-based apple quality inspection using kernel principal component analysis. J. Food Eng., 2007; 81(4): 741–749.

Langenakens J, Vergauwe G, De Moor A. Comparing hand held spray guns and spray booms in lettuce crops in a greenhouse. Asp. Appl. Biol., 2002; 66: 123–128.

Nuyttens D, Windey S, Sonck B. Comparison of operator exposure for five different greenhouse spraying applications. J. Agric. Saf. Health, 2004; 10(3): 187.

Sánchez-Hermosilla J, Rodríguez F, González R, Guzmán J L, Berenguel M. A mechatronic description of an autonomous mobile robot for agricultural tasks in greenhouses. In Mobile Robots Navigation, InTech, 2010; 583-608.

González R, Rodríguez F, Sánchez-Hermosilla J, Donaire J G. Navigation techniques for mobile robots in greenhouses. Appl. Eng. Agric., 2009; 25(2): 153–165.

Borenstein J, Everett H R, Feng L. Navigating mobile robots: Systems and techniques. AK Peters, Ltd., 1996.

Belforte G, Deboli R, Gay P, Piccarolo P, Aimonino D R. Robot design and testing for greenhouse applications. Biosyst. Eng., 2006; 95(3): 309–321.

Burks T F, Shearer S A, Heath J R, Donohue K D. Evaluation of neural-network classifiers for weed species discrimination. Biosyst. Eng., 2005; 91(3): 293–304.

Granitto P M, Verdes P F, Ceccatto H A. Large-scale investigation of weed seed identification by machine vision. Comput. Electron. Agric., 2005; 47(1): 15–24.

Bogue R. Sensors key to advances in precision agriculture. Sens. Rev., 2017; 37(1): 1–6.

Mulla D J. Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosyst. Eng., 2013; 114(4): 358–371.

Shamshiri R, Ishak W, Ismail W. Design and Simulation of Control Systems for a Field Survey Mobile Robot Platform. Res. J. Appl. Sci. Eng. Technol., 2013; 6(13): 2307–2315.

Das J, Cross G, Qu C, Makineni A, Tokekar P, Mulgaonkar Y, Kumar V. Devices, systems, and methods for automated monitoring enabling precision agriculture. IEEE International Conference on Automation Science and Engineering (CASE), 2015; pp.462–469.

Guzman R, Navarro R, Beneto M, Carbonell D, Robotnik—Professional service robotics applications with ROS. Robot Operating System (ROS), Springer, 2016; pp.253–288.

Pierzchała M, Giguère P, Astrup R. Mapping forests using an unmanned ground vehicle with 3D LiDAR and graph-SLAM. Comput. Electron. Agric., 2018; 145: 217–225.

Strisciuglio N, Tylecek R, Petkov N, Bieber P, Hemming J, van Henten E, et al. TrimBot2020: an outdoor robot for automatic gardening. arXiv Prepr. arXiv1804.01792, 2018.

Diago M P and Tardaguila J. A new robot for vineyard monitoring. Wine Vitic. J., 2015; 30(3): 38.

Underwood J P, Calleija M, Taylor Z, Hung C, Nieto J, Fitch R, et al. Real-time target detection and steerable spray for vegetable crops. in Proceedings of the International Conference on Robotics and Automation: Robotics in Agriculture Workshop, Seattle, WA, USA, 2015; pp.26–30.

Bergerman M, Billingsley J, Reid J, van Henten E. Robotics in agriculture and forestry. in Springer Handbook of Robotics, Springer, 2016; pp.1463–1492.

Blender T, Buchner T, Fernandez B, Pichlmaier B, Schlegel C. Managing a Mobile Agricultural Robot Swarm for a seeding task. in Industrial Electronics Society, IECON 2016-42nd Annual Conference of the IEEE, 2016; pp.6879–6886.

Blender T, Schlegel C. Motion control for omni-drive servicerobots under Kinematic, Dynamic And Shape Constraints. IEEE 20th Conference on Emerging Technologies & Factory Automation (ETFA), 2015; pp.1–8.

Guzmán R, Ariño J, Navarro R, Lopes C M, Graça J, Reyes M, et al. Autonomous hybrid GPS/reactive navigation of an unmanned ground vehicle for precision viticulture-VINBOT, In 62nd German Winegrowers Conference At: Stuttgart, 2016.

Roure F, Moreno G, Soler M, Faconti D, Serrano D, Astolfi P, et al. GRAPE: Ground Robot for vineyArd Monitoring and ProtEction. Iberian Robotics Conference, 2017; pp.249–260.

[150] Młotek M, Kuta Ł, Stopa R, Komarnicki P. The effect of manual harvesting of fruit on the health of workers and the quality of the obtained produce, 2015; 3: 1712–1719.

Vallad GE, Smith HA, Dittmar PJ, Freeman JH. Vegetable production handbook of Florida. Gainesville, FL, USA: University of Florida, IFAS Extension; 2017. Available at: http://edis.ifas.ufl.edu/pdffiles/CV/CV29200.pdf [Last access: July 10th, 2018].

Li P, Lee S H, Hsu H Y. Review on fruit harvesting method for potential use of automatic fruit harvesting systems. Procedia Eng., 2011; 23: 351–366.

Qureshi W S, Payne A, Walsh K B, Linker R, Cohen O, Dailey M N. Machine vision for counting fruit on mango tree canopies. Precision Agriculture, 2017; 18(2): 224–244.

Weltzien C, Harms H H, Diekhans N. KFZ Radarsensor zur Objekterkennung im landwirtschaftlichen Umfeld. LANDTECHNIK– Agricultural Eng., 2006; 61(5): 250–251.

Bulanon D M, Burks T F, Alchanatis V. Study on temporal variation in citrus canopy using thermal imaging for citrus fruit detection. Biosyst. Eng., 2008; 101(2): 161–171.

Okamoto H, Lee W S. Green citrus detection using hyperspectral imaging. Comput. Electron. Agric., 2009; 66(2): 201–208.

Westling F, Underwood J, Örn S. Light interception modelling using unstructured LiDAR data in avocado orchards. arXiv Prepr. arXiv1806.01118, 2018.

Bulanon D M, Burks T F, Alchanatis V. Image fusion of visible and thermal images for fruit detection. Biosyst. Eng., 2009; 103(1): 12–22.

Hemming J, Ruizendaal J, illem Hofstee J W, van Henten E J. Fruit detectability analysis for different camera positions in sweet-pepper. Sensors (Basel)., 2014;14(4): 6032–6044.

Song Y, Glasbey . A, Horgan G W, Polder G, Dieleman J A, van der Heijden G W A M. Automatic fruit recognition and counting from multiple images. Biosyst. Eng., 2014; 118(C): 203–215.

Tao Y, Zhou J. Automatic apple recognition based on the fusion of color and 3D feature for robotic fruit picking. Comput. Electron. Agric., 2017; 142(A): 388–396.

Bao G, Cai S, Qi L, Xun Y, Zhang L, Yang Q. Multi-template matching algorithm for cucumber recognition in natural environment. Comput. Electron. Agric., 2016; 127(C): 754–762.

Barnea E, Mairon R, Ben-Shahar O. Colour-agnostic shape-based 3D fruit detection for crop harvesting robots. Biosyst. Eng., vol. 146, pp. 57–70, 2016.

Vitzrabin E, Edan Y. Adaptive thresholding with fusion using a RGBD sensor for red sweet-pepper detection. Biosyst. Eng., 2016; 146: 45–56.

Gongal A, Amatya S, Karkee M, Zhang Q, Lewis K. Sensors and systems for fruit detection and localization: A review. Comput. Electron. Agric., 2015; 116: 8–19.

Wang Q, Nuske S, Bergerman M, Singh S. Automated crop yield estimation for apple orchards. In Proc. International Symposium on Experimental Robotics, Quebec, June 2012; pp.745–758.

Sa I, Ge Z, Dayoub F, Upcroft B, Perez T, McCool C. Deepfruits: A fruit detection system using deep neural networks. Sensors, 2016; 16(8): 1222.

Amatya S, Karkee M, Gongal A, Zhang Q, Whiting M D. Detection of cherry tree branches with full foliage in planar architecture for automated sweet-cherry harvesting. Biosyst. Eng., 2015; 146: 3–15.

Bac C W, Henten E J, Hemming J, Edan, Y. Harvesting Robots for High‐value Crops: State‐of‐the‐art Review and Challenges Ahead. J. F. Robot., 2014; 31(6): 888–911.

Murphy R. Introduction to AI robotics. MIT Press, 2000.

Bontsema J, Hemming J, Pekkeriet E, Saeys W, Edan Y, Shapiro A, et al. CROPS: Clever robots for crops. Eng. Technol. Ref., 2015; 1(1): 1–11.

De-An Z, Jidong L, Wei J, Ying Z, Yu C. Design and control of an apple harvesting robot. Biosyst. Eng., 2011; 110(2): 112–122.

Davidson J R, Hohimer C J, Mo C, Karkee M. Dual Robot Coordination for Apple Harvesting. ASABE Annual International Meeting, 2017; p.1.

Davidson J R, Silwal A, Hohimer C J, Karkee M, Mo C, Zhang Q, Proof-of-concept of a robotic apple harvester. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2016; pp.634–639.

He L, Fu H, Karkee M, Zhang Q. Effect of fruit location on apple detachment with mechanical shaking. Biosyst. Eng., 2017; 157: 63–71.

Bac C W. Improving obstacle awareness for robotic harvesting of sweet-pepper. Wagenigen University, 2015.

Bao G J, Yao P F, Xu Z G, Li K, Wang Z H, Zhang L B, et al. Pneumatic bio-soft robot module: Structure, elongation and experiment. Int J Agric & Biol Eng, 2017; 10(2): 114–122.

Nguyen T T, Kayacan E, De Baedemaeker J, Saeys W. Task and motion planning for apple harvesting robot. IFAC Proc., 2013; 46(18): 247–252.

Osroosh Y, Khot L R, Peters R T. Economical thermal-RGB imaging system for monitoring agricultural crops. Comput. Electron. Agric., 2018; 147: 34–43.

Tzounis A, Katsoulas N, Bartzanas T, Kittas C. Internet of things in agriculture, recent advances and future challenges. Biosyst. Eng., 2017; 164: 31–48.

Kamilaris A, Kartakoullis A, and Prenafeta-Boldú F X. A review on the practice of big data analysis in agriculture. Comput. Electron. Agric., 2017; 143: 23–37.

Hornero G, Gaitán-Pitre J E, Serrano-Finetti E, Casas O, Pallas-Areny R. A novel low-cost smart leaf wetness sensor. Comput. Electron. Agric., 2017; 143: 286–292.

Sarangi S, Umadikar J, Kar S. Automation of Agriculture Support Systems using Wisekar: Case study of a crop-disease advisory service. Comput. Electron. Agric., 2016; 122: 200–210.

Ojha T, Misra S, Raghuwanshi N S. Wireless sensor networks for agriculture: The state-of-the-art in practice and future challenges. Comput. Electron. Agric., 2015; 118: 66–84.

Nam W H, Kim T, Hong E M, Choi J Y, Kim J T. A Wireless Sensor Network (WSN) application for irrigation facilities management based on Information and Communication Technologies (ICTs). Comput. Electron. Agric., 2017; 143: 185–192.

Zhang Y, Li Y, He Y, Liu F, Cen H, Fang H. Near ground platform development to simulate UAV aerial spraying and its spraying test under different conditions. Comput. Electron. Agric., 2018; 148: 8–18.

Senthilnath J, Kandukuri M, Dokania A, Ramesh K N. Application of UAV imaging platform for vegetation analysis based on spectral-spatial methods. Comput. Electron. Agric., 2017; 140: 8–24.

Koc-San D, Selim S, Aslan N, San B T. Automatic citrus tree extraction from UAV images and digital surface models using circular Hough transform. Comput. Electron. Agric., 2018; 150: 289–301.

Xia J, Yang Y, Cao H, Han C, Ge D, Zhang W. Visible-near infrared spectrum-based classification of apple chilling injury on cloud computing platform. Comput. Electron. Agric., 2018; 145: 27–34.

Satit K and Somjit A. RESTful economic-ADS model for cost-effective chain-wide traceability system-based cloud computing. Comput. Electron. Agric., 2017; 139: 164–179.

Ojha T, Misra S, Raghuwanshi N S. Sensing-cloud: Leveraging the benefits for agricultural applications. Comput. Electron. Agric., 2017; 135: 96–107.

Gu Z, Qi Z, Ma L, Gui D, Xu J, Fang Q, Yuan S, Feng G. Development of an irrigation scheduling software based on model predicted crop water stress. Comput. Electron. Agric., 2017; 143: 208–221.

Burguete J, Lacasta A, García-Navarro P. SURCOS: A software tool to simulate irrigation and fertigation in isolated furrows and furrow networks. Comput. Electron. Agric., 2014; 103: 91–103.

Cappelli G, Bregaglio S, Romani M, Feccia S, Confalonieri R. A software component implementing a library of models for the simulation of pre-harvest rice grain quality. Comput. Electron. Agric., 2014; 104: 18–24.

Duarte L, Teodoro A. C, Monteiro A. T, Cunha M, Gonçalves H. QPhenoMetrics: An open source software application to assess vegetation phenology metrics. Comput. Electron. Agric., 2018; 148: 82–94.

Gimenez J, Herrera D, Tosetti S, and Carelli R. Optimization methodology to fruit grove mapping in precision agriculture. Comput. Electron. Agric., 2015; 116: 88–100.

Chen D, Shi Y, Huang W, Zhang J, Wu K. Mapping wheat rust based on high spatial resolution satellite imagery. Comput. Electron. Agric., 2018; 152: 109–116.

Pomar J, López V, and Pomar C. Agent-based simulation framework for virtual prototyping of advanced livestock precision feeding systems. Comput. Electron. Agric., 2011; 78(1): 88–97.

Kaloxylos A, Groumas A, Sarris V, Katsikas L, Magdalinos P, Antoniou E, Politopoulou Z, Wolfert S, Brewster C, Eigenmann R, Maestre Terol C. A cloud-based Farm Management System: Architecture and implementation. Comput. Electron. Agric., 2014; 100: 168–179.

Luvisi A, Pagano M, Bandinelli R, Rinaldelli E, Gini B, Scartòn M, Manzoni G, and Triolo E. Virtual vineyard for grapevine management purposes: A RFID/GPS application. Comput. Electron. Agric., 2011; 75(2): 368–371.

Stojanovic V, Falconer R E, Isaacs J, Blackwood D, Gilmour D, Kiezebrink D, Wilson J. Streaming and 3D mapping of AGRI-data on mobile devices. Comput. Electron. Agric., 2017; 138: 188–199.

Cunha C R, Peres E, Morais R, Oliveira A A, Matos S G, Fernandes M A, Ferreira P J S G, Reis M J C S. The use of mobile devices with multi-tag technologies for an overall contextualized vineyard management. Comput. Electron. Agric., 2010; 73( 2): 154–164.

Picon A, Alvarez-Gila A, Seitz M, Ortiz-Barredo A, Echazarra J, Johannes A. Deep convolutional neural networks for mobile capture device-based crop disease classification in the wild. Comput. Electron. in Agric., 2018. doi: 10.1016/j.compag.2018.04.002

Molina-Martínez J M, Jiménez M, Ruiz-Canales A, Fernández-Pacheco D G. RaGPS: A software application for determining extraterrestrial radiation in mobile devices with GPS. Comput. Electron. Agric., 2011; 78(1): 116–121.

Roldán J J, Garcia-Aunon P, Garzón M, de León J, del Cerro J, Barrientos A. Heterogeneous multi-robot system for mapping environmental variables of greenhouses. Sensors (Basel), 2016; 16(7): 1018. doi: 10.3390/s16071018.




Copyright (c) 2018 International Journal of Agricultural and Biological Engineering



2023-2026 Copyright IJABE Editing and Publishing Office