Feasibility of terahertz spectroscopy for hybrid purity verification of rice seeds
Abstract
Keywords: purity detection, hybrid rice seeds, terahertz spectroscopy, extreme learning algorithm
DOI: 10.25165/j.ijabe.20181105.3898
Citation: Yang Y L, Zhou S L, Song J, Huang J, Li G L, Zhu S P. Feasibility of terahertz spectroscopy for hybrid purity verification of rice seeds. Int J Agric & Biol Eng, 2018; 11(5): 65–69.
Keywords
Full Text:
PDFReferences
Lai Y H. Identification of the authenticity and purity of hybrid rice seed. China Seed Industry, 2015; 6: 19–21. (in Chinese)
Jia S Q, Liu Z, Li S M, Li L, Ma Q, Zhang X D, et al. Study on method of maize hybrid purity identification based on hyperspectral image technology. Spectroscopy and Spectral Analysis, 2013; 33(10): 2847–2852. (in Chinese)
Liang L, Yang M H, Liu Z X, Xu H W, Liu F H, He Q Z, et al. Purity measurement of hybrid rice seed Yixiang 725 with visible-near infrared reflectance spectra. Spectroscopy and Spectral Analysis, 2009; 29(11): 2962–2965. (in Chinese)
Farhadi M, Tigabu M, Stener L G, Odén P C. Feasibility of visible + near infrared spectroscopy for non-destructive verification of European × Japanese larch hybrid seeds. New Forests, 2016; 47(2): 271–285.
Attaviroj N, Kasemsumran S, Noomhorm A. Rapid variety identification of pure rough rice by fourier-transform near-infrared spectroscopy. Cereal Chemistry, 2011; 88(5): 490–496.
Li T X, Jia S Q, Liu X, Zhao S Y, Ran H, Yan Y L, et al. Maize hybrid seed purity identification based on near infrared reflectance (NIR) and transmittance (NIT) spectra. Spectroscopy and Spectral Analysis, 2015; 35(12): 3388–3392. (in Chinese)
Zhou S L, Zhu S P, Li G L, Huang J, Yang Y L. Study on the measurement and optimization of soybean oil optical spectrum in THz range. Spectroscopy and Spectral Analysis, 2016; 36(4): 924–928. (in Chinese)
Zhou S L, Valchev D G, Dinovitser A, Chappell J M, Iqbal A, Ng B W-H, et al. Terahertz signal classification based on geometric algebra. IEEE Transactions on Terahertz Science & Technology, 2016; 6(6): 793–802.
Deshmukh Y, Khare P, Nadaf A B, Patra D. Discrimination between 2AP producing and non‐producing rice rhizobacterial isolates using volatile profiling: a chemometric approach. Journal of Chemometrics, 2016; 29(12): 648–658.
Xu W D, Xie L J, Ye Z Z, Gao W L, Yao Y, Chen M, et al. Discrimination of transgenic rice containing the Cry1Ab protein using terahertz spectroscopy and chemometrics. Sci Rep., 2015; 5: 11115.
Xu W D, Liu X, Xie L J, Ying Y. Comparison of Fourier transform near-infrared, visible near-infrared, mid-infrared, and Raman spectroscopy as non-invasive tools for transgenic rice discrimination. Transactions of the ASABE, 2014; 57(1): 141–150.
Xie L J, Yao Y, Ying Y B. The application of terahertz spectroscopy to protein detection: A review. Applied Spectroscopy Reviews, 2014; 49(6): 448–461.
Li T J, Liu J J, Shao G F, Fan L L. A novel THz spectroscopy recognition method for transgenic organisms based on APSO combined with SVM. Optics & Spectroscopy, 2016; 120(4): 660–665.
Shen X C, Li B, Li X, Long Y. Identification of transgenic and non-transgenic cotton seed based on terahertz range spectroscopy. Transactions of the CSAE, 2017; 33(S1): 288–292. (in Chinese)
Ge H Y, Jiang Y Y, Lian F Y, Zhang Y, Xia S H. Characterization of wheat varieties using terahertz time-domain spectroscopy. Sensors, 2015; 15(6): 12560–12572.
Gao H, Huang G B, Song S J, You K. Trends in extreme learning machines: A review. Neural Networks, 2015; 61(C): 32–48.
Baum E B, Haussler D. What size net gives valid generalization? Neural Computation, 2014; 1(1): 151–160.
Heeswijk M V, Miche Y. Binary/ternary extreme learning machines. Neurocomputing, 2015; 149: 187–197.
Copyright (c) 2018