Quantitative identification of crop disease and nitrogen-water stress in winter wheat using continuous wavelet analysis
Abstract
Keywords: winter wheat, crop disease, powdery mildew, stripe rust, nitrogen-water stress, continuous wavelet analysis, quantitative identification
DOI: 10.25165/j.ijabe.20181102.3467
Citation: Huang W J, Lu J J, Ye H C, Kong W P, Mortimer A H, Shi Y. Quantitative identification of crop disease and nitrogen-water stress in winter wheat using continuous wavelet analysis. Int J Agric & Biol Eng, 2018; 11(2): 145–152.
Keywords
Full Text:
PDFReferences
Li G B, Zeng S M, Li Z Q. Integrated Management of Wheat Pests, 1989.
Singh R P, Huerta-Espino J, Roelfs A P. The wheat rusts, 2002.
Bannari A, Khurshid K S, Staenz K, Schwarz J W. A comparison of hyperspectral chlorophyll indices for wheat crop chlorophyll content estimation using laboratory reflectance measurements. IEEE Trans Geosci Remote Sensing, 2007; 45(10): 3063–74.
West J S, Bravo C, Oberti R, Lemaire D, Moshou D, McCartney H A. The potential of optical canopy measurement for targeted control of field crop diseases. Annual Reviews of Phytopathology, 2003; 41: 593–614.
Sankaran S, Mishra A, Ehsani R, Davis C. A review of advanced techniques for detecting plant diseases. Computers and Electronics in Agriculture, 2010; 72(1): 1–13.
Zhang J C, Pu R L, Yuan L, Wang J H, Huang W J, Yang G J. Monitoring powdery mildew of winter wheat by using moderate resolution multi- temporal satellite imagery. PLoS One, 2014; 9(4).
Devadas R, Lamb D W, Simpfendorfer S, Backhouse D. Evaluating ten spectral vegetation indices for identifying rust infection in individual wheat leaves. Precision Agriculture, 2009; 10(6): 459–470.
Huang L S, Zhang D Y, Liang D, Yuan L, Zhao J L, Hu G S, et al. Continuous Wavelet Analysis for Diagnosing Stress Characteristics of Leaf Powdery Mildew. International Journal of Agriculture and Biology, 2013; 15(1): 34–40.
Huang W J, Liu L Y, Huang M Y, Wang J H. Inversion of the severity of winter wheat yellow rest using proper hyper spectral index. Transactions of the CSAE, 2005; 21(4): 97–103.
Clark R N, Roush T L. Reflectance spectroscopy - quantitative-analysis techniques for remote-sensing applications. Journal of Geophysical Research, 1984; 89(NB7): 6329–6340.
Demetriadesshah T H, Steven M D, Clark J A. High-resolution derivative spectra in remote-sensing. Remote Sensing of Environment, 1990; 33(1): 55–64.
Huang W, Lamb D W, Niu Z, Zhang Y, Liu L, Wang J. Identification of yellow rust in wheat using in-situ spectral reflectance measurements and airborne hyperspectral imaging. Precision Agriculture, 2007; 8(4-5): 187–97.
Huang M Y, Huang W J, Liu L Y, Huang Y D. Spectral reflectance feature of winter wheat single leaf infected with stripe rust and severity level inversion. Transactions of the CSAE, 2004; 20(1): 176–180.
Guan Q S, Huang W J, Jiang J B, Liu L Y. Quantitative identification of stripe rust, powdery mildew and fertilizer-water stress in winter wheat using in-situ hyperspectral data. Sensor Letters, 2014; 12: 1–7.
Yuan L, Huang Y B, Loraamm R W, Nie C W, Wang J H, Zhang J C. Spectral analysis of winter wheat leaves for detection and differentiation of diseases and insects. Field Crops Research, 2014; 156: 199–207.
Huang W, Guan Q, Luo J, Zhang J, Zhao J, Liang D, et al. New optimized spectral indices for identifying and monitoring winter wheat diseases. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014; 7(6): 2516–24.
Torrence C, Compo GP. A practical guide to wavelet analysis. Bulletin of the American Meteorological Society, 1998; 79(1): 61–78.
Rivard B, Feng J, Gallie A, Sanchez-Azofeifa A. Continuous wavelets for the improved use of spectral libraries and hyperspectral data. Remote Sensing of Environment, 2008; 112(6): 2850–62.
Cheng T, Rivard B, Sanchez-Azofeifa A. Spectroscopic determination of leaf water content using continuous wavelet analysis. Remote Sensing of Environment, 2011; 115(2): 659–670.
Cheng T, Rivard B, Sanchez-Azofeifa G A, Feng J, Calvo-Polanco M. Continuous wavelet analysis for the detection of green attack damage due to mountain pine beetle infestation. Remote Sensing of Environment, 2010; 114(4): 899–910.
Zhang J C, Yuan L, Pu R L, Loraamm R W, Yang G J, Wang J H. Comparison between wavelet spectral features and conventional spectral features in detecting yellow rust for winter wheat. Computers and Electronics in Agriculture, 2014; 100: 79–87.
Zhang J C, Pu R L, Huang W J, Yuan L, Luo J H, Wang J H. Using in-situ hyperspectral data for detecting and discriminating yellow rust disease from nutrient stresses. Field Crops Research, 2012; 134: 165–74.
Filella I, Serrano L, Serra J, Penuelas J. Evaluating wheat nitrogen status with canopy reflectance indexes and discriminant-analysis. Crop Science, 1995; 35(5): 1400–1405.
Gitelson A A, Merzlyak M N, Chivkunova O B. Optical properties and nondestructive estimation of anthocyanin content in plant leaves. Photochemistry and Photobiology, 2001; 74(1): 38–45.
Kim M S, Daughtry C S T, Chappelle E W, McMurtrey J E, Walthall C L. The Use of High Spectral Resolution Bands for Estimating Absorbed Photosynthetically Active Radiation (Apar). Proceedings of the Sixth Symposium on Physical Measurements and Signatures in Remote Sensing, ValD’Isere, France, 1994,17-21; pp.299–306.
Daughtry C S T, Walthall C L, Kim M S, de Colstoun E B, McMurtrey J E. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sensing of Environment, 2000; 74(2): 229–239.
Haboudane D, Miller J R, Tremblay N, Zarco-Tejada P J, Dextraze L. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sensing of Environment, 2002; 81(2-3): 416–426.
Merton R, Huntington J. Early simulation of the ARIES-1 satellite sensor for multi-temporal vegetation research derived from AVIRIS. In Summaries of the Eight JPL Airborne Earth Science Workshop, 1999; pp.299–307.
Rouse J W, Haas R H, Scheel J A, Deering D W. Monitoring Vegetation Systems in the Great Plains with ERTS. Proceedings, 3rd Earth Resource Technology Satellite (ERTS) Symposium, 1974, 1; pp.48–62.
Zarco-Tejada P J, Berjon A, Lopez-Lozano R, Miller J R, Martin P, Cachorro V, et al. Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy. Remote Sensing of Environment, 2005; 99(3): 271–287.
Gamon J A, Penuelas J, Field C B. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sensing of Environment, 1992; 41(1): 35–44.
Naidu R A, Perry E M, Pierce F J, Mekuria T. The potential of spectral reflectance technique for the detection of Grapevine leafroll-associated virus-3 in two red-berried wine grape cultivars. Computers and Electronics in Agriculture, 2009; 66(1): 38–45.
Gao B C. NDWI - A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 1996; 58(3): 257–66.
Huete A R. A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 1988; 25(3): 295–309.
Rondeaux G, Steven M, Baret F. Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment, 1996; 55(2): 95–107.
Bruce L M, Morgan C, Larsen S. Automated detection of subpixel hyperspectral targets with continuous and discrete wavelet transforms. IEEE Trans Geosci Remote Sensing, 2001; 39(10): 2217–2226.
Zhao T, Liang Z Z, Zhang D, Zou Q. Interest filter vs. interest operator: Face recognition using Fisher linear discriminant based on interest filter representation. Pattern Recognition Letters, 2008; 29(13): 1849–1857.
Garcia-Allende P B, Conde O M, Mirapeix J, Cobo A, Lopez-Higuera J M. Quality control of industrial processes by combining a hyperspectral sensor and Fisher's linear discriminant analysis. Sensors and Actuators B-Chemical, 2008; 129(2): 977–84.
Mclachlan G J. Discriminant analysis and statistical pattern recognition Wiley-Interscience, 2004.
Estes W K. Toward a statiscal- the theory of learning (reprinted from phychological review, Vol 57, PG 94, 1950). Psychol Rev, 1994; 101(2): 282–9.
Graeff S, Link J, Claupein W. Identification of powdery mildew (Erysiphe graminis sp tritici) and take-all disease (Gaeumannomyces graminis sp tritici) in wheat (Triticum aestivum L.) by means of leaf reflectance measurements. Central European Journal of Biology, 2006; 1(2): 275–288.
Ahern F J. The effects of bark beetle stress on the foliar spectral reflectance of lodgepole pine. International Journal of Remote Sensing, 1988; 9(9): 1451–1468.
Blackburn G A, Ferwerda J G. Retrieval of chlorophyll concentration from leaf reflectance spectra using wavelet analysis. Remote Sensing of Environment, 2008; 112(4): 1614–1632.
Ferwerda J G, Jones S. Continuous wavelet transformations for hyperspectral feature detection. Proceedings of the 12th International Symposium on Spatial Data Handling, 2006; July 12–14.
Copyright (c)