Assessing and characterizing oilseed rape freezing injury based on MODIS and MERIS data
Abstract
Keywords: Brassica napus, oilseed rape, freezing injury, crop monitoring, MODIS, MERIS
DOI: 10.3965/j.ijabe.20171003.2721
Citation: She B, Huang J F, Zhang D Y, Huang L S. Assessing and characterizing oilseed rape freezing injury based on MODIS and MERIS data. Int J Agric & Biol Eng, 2017; 10(3): 143–157.
Keywords
Full Text:
PDFReferences
Cannell M G R, Smith R I. Climatic warming, spring budburst and forest damage on trees. J. Appl. Ecol, 1986; 23(1): 177–191.
Gu L H, Hanson P J, Mac Post W, Kaiser D P, Yang B, Nemani R, et al. The 2007 Eastern US spring freeze: Increased cold damage in a warming world? BioScience, 2008; 58(3): 253–262.
Lardon A, Triboi-Blondel A M. Freezing injury to ovules, pollen and seeds in winter rape. J. Exp. Bot, 1994; 45(277): 1177–1181.
Rapacz M. Cold-deacclimation of oilseed rape (Brassica napus var. oleifera) in response to fluctuating temperatures and photoperiod. Ann. Bot, 2002; 89(5): 543–549.
Lardon A, Triboi-Blondel A M. Cold and freeze stress at flowering Effects on seed yields in winter rapeseed. Field
Crop. Res, 1995; 44(2): 95–101.
Behrens T, Diepenbrock W. Using digital image analysis to describe canopies of winter oilseed rape (Brassica napus L.) during vegetative developmental stages. J. Agronomy & Crop Science, 2006; 192(4): 295–302.
Silleos N, Perakis K, Petsanis G. Assessment of crop damage using space remote sensing and GIS. Int. J. Remote Sens, 2002; 23(3): 417–427.
Wang H F, Gu X H, Wang J H, Dong Y Y. Monitoring winter wheat freeze injury based on multi-temporal data. Intell. Autom. Soft Comput, 2012; 18(8): 1035–1042.
Jurgens C. The modified normalized difference vegetation index (mNDVI) a new index to determine frost damages in agriculture based on Landsat TM data. Int. J. Remote Sens, 1997; 18(7): 3583–3594.
Feng M C, Yang W D, Cao L L, Ding G W. Monitoring winter wheat freeze injury using multi-temporal MODIS data. Agric. Sci. China, 2009; 8(9): 1053–1062.
Currit N, St Clair S B. Assessing the impact of extreme climatic events on aspen defoliation using MODIS imagery. Geocarto Int, 2010; 25(2): 133–147.
Tan Z, Ding M, Yang X, Ou Z. Monitoring freeze injury and evaluating losing to sugar-cane using RS and GPS. International Conference on Computer and Computing Technologies in Agriculture. Springer: Boston, US, 2009; 293: 307–316.
Kerdiles H, Grondona M, Rodriguez R, Seguin B. Frost mapping using NOAA AVHRR data in the Pampean region, Argentina. Agric. For. Meteorol, 1996; 79(3): 157–182.
Garbulsky M F, Peñuelas J, Gamon J, Inoue Y, Filella I. The photochemical reflectance index (PRI) and the remote sensing of leaf, canopy and ecosystem radiation use efficiencies: A review and meta-analysis. Remote Sens. Environ, 2011; 115(2): 281–297.
Chandrasekar K, Sesha Sai M V R, Roy P S, Dwevedi R S. Land Surface Water Index (LSWI) response to rainfall and NDVI using the MODIS Vegetation Index product. Int. J. Remote Sens, 2010; 31(15): 3987–4005.
Van Der Meer F, Bakker W, Scholte K, Skidmore A, De Jong S, Clevers J, et al. Spatial scale variations in vegetation indices and above-ground biomass estimates: Implications for MERIS. Int. J. Remote Sens, 2001; 22(17): 3381–3396.
Xiong X, Sun J, Wu A, Chiang K F, Esposito J, Barnes W. Terra and Aqua MODIS calibration algorithms and uncertainty analysis. Remote Sensing. International Society for Optics and Photonics, Bruges, Belgium, October 21, 2005; pp. 59780V–59780V-10.
Xiao X M, Boles S, Liu J Y, Zhuang D F, Frolking S, Li C S, et al. Mapping paddy rice agriculture in southern China using multi-temporal MODIS images. Remote Sens. Environ, 2005; 95(4): 480–492.
Xiao X M, Boles S, Frolking S, Li C S, Babu J Y, Salas W, et al. Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images. Remote Sens. Environ, 2006; 100(1): 95–113.
Chen J, Jönsson P, Tamura M, Gu Z, Matsushita B, Eklundh L. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky–Golay filter. Remote Sens. Environ, 2004; 91(3): 332–344.
Ren J, Chen Z, Zhou Q, Tang H. Regional yield estimation for winter wheat with MODIS-NDVI data in Shandong, China. Int. J. Appl. Earth Obs. Geoinf, 2008; 10(4): 403–413.
Jönsson P, Eklundh L. TIMESAT—a program for analyzing time-series of satellite sensor data. Comput. Geosci, 2004; 30(8): 833–845.
Rouse J W, Haas R H, Schell J A, Deering D W, Harlan J C. Monitoring the vernal advancements and retrogradation of natural vegetation. NASA/GSFC, Final Report, Greenbelt, MD, USA, 1974; pp. 1–137.
Liu H Q, Huete A R. A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Trans. Geosci. Remote Sens, 1995; 33(2): 457–465.
Huete A R, Liu H Q, Batchily K, van Leeuwen W. A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sens. Environ, 1997; 59(3): 440–451.
Gitelson A A, Kaufman Y J, Merzlyak M N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ, 1996; 58(3): 289–298.
Huete A R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ, 1988; 25(3): 295–309.
Gamon J A, Peñuelas J, Field C B. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sens. Environ, 1992; 41(1): 35–44.
Gao B C. NDWI—a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ, 1996; 58(3): 257–266.
Horler D N H, Dockray M, Barber J. The red edge of plant leaf reflectance. Int. J. Remote Sens, 1983; 4(2): 273–288.
Curran P J, Dungan J L, Macler B A, Plummer S E. The effect of a red leaf pigment on the relationship between red edge and chlorophyll concentration. Remote Sens. Environ, 1991; 35(1): 69–76.
Blackburn G A. Remote sensing of forest pigments using airborne imaging spectrometer and LIDAR imagery. Remote Sens. Environ, 2002; 82(2): 311–321.
Pu R, Gong P, Biging G S, Larrieu M R. Extraction of red edge optical parameters from Hyperion data for estimation of forest leaf area index. IEEE Trans. Geosci. Remote Sens, 2003; 41(4): 916–921.
Smith K L, Steven M D, Colls J J. Use of hyperspectral derivative ratios in the red-edge region to identify plant stress responses to gas leaks. Remote Sens. Environ, 2004; 92(2): 207–217.
Guyot G, Baret F, Jacquemoud S. Imaging spectroscopy for vegetation studies. Imaging spectroscopy: Fundamentals and prospective application, 1992; 2: 145–165.
Nguy-Robertson A L, Peng Y, Gitelson A A, Arkebauer T J, Pimstein A, Herrmann I, et al. Estimating green LAI in four crops: Potential of determining optimal spectral bands for a universal algorithm. Agric. For. Meteorol, 2014; 192: 140–148.
Dash J, Curran P J. The MERIS terrestrial chlorophyll index. Int. J. Remote Sens, 2004; 25(23): 5403–5413.
Baret F, Pavageau K, Beal D, Weiss M, Berthelot B, Regner P. Report on the algorithm theoretical basis document for MERIS Top of Atmosphere Land Products (TOA_VEG). Contract ESA AO/1-4233/02/I-LG, 2006.
Gitelson A A, Merzlyak M N. Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation. J. Plant Physiol, 1994; 143(3): 286–292.
Gao X, Huete A R, Ni W G, Miura T. Optical–biophysical relationships of vegetation spectra without background contamination. Remote Sens. Environ, 2000; 74(3): 609–620.
Wardlow B D, Egbert S L, Kastens J H. Analysis of time-series MODIS 250 m vegetation index data for crop classification in the US Central Great Plains. Remote Sens. Environ, 2007; 108(3): 290–310.
Copyright (c)