Image segmentation algorithm for greenhouse cucumber canopy under various natural lighting conditions
Abstract
Keywords: greenhouse, cucumber canopy, machine vision, image segmentation, illumination, retinex,
DOI: 10.3965/j.ijabe.20160903.2102
Citation: Sun G X, Li Y B, Wang X C, Hu G Y, Wang X, Zhang Y. Image segmentation algorithm for greenhouse cucumber canopy under various natural lighting conditions. Int J Agric & Biol Eng, 2016; 9(3): 130-138.
Keywords
Full Text:
PDFReferences
Li C Y, Teng G H, Zhao C J, Qiao X J, Wu C L. Development of non-contact measurement on plant growth in greenhouse using computer vision. Transactions of the CSAE, 2003; 19(3): 140–143. (in Chinese with English abstract)
Zhang Y, Wang X C, Sun G X, Li Y B, Sun X. Leaves and stems measurement of plants based on laser vision in greenhouses. Transactions of the CSAM, , 2014; 45(9): 254–259. (in Chinese with English abstract)
Liang D, Guan Q S, Huang W J, Huang L S, Yang G J. Remote sensing inversion of leaf area index based on support vector machine regression in winter wheat. Transactions of the CSAE, , 2013; 29(7): 117–123. (in Chinese with English abstract)
Ding W L, Ma P L, Cheng Z J. Visual modeling and simulation of plant growth based on plant functional-structural mutual feedback mechanism. Transactions of the CSAE, 2008; 24(11): 165–168. (in Chinese with English abstract)
Diaz-Ramirez V H, Kober V. Target recognition under nonuniform illumination conditions. Applied Optics, 2009; 48(7): 1408–1418. doi: 10.1364/ao.48.001408.
Yi J Z, Mao X, Chen L J, Xue Y L, Rovetta A, Caleanu C-D. Illumination normalization of face image based on illuminant direction estimation and improved retinex. PLoS ONE, 2015; 10(4): 1–20. doi: 10.1371/journal.pone.0122200.
Filippi A M, Güneralp İ. Influence of shadow removal on image classification in riverine environments. Optics Letters, 2013; 38(10): 1676–1678. doi: 10.1364/OL.38. 001676.
Perez-Jimenez A, Lopez F, Benlloch J V, Christensen S. Color and shape analysis techniques for weed detection in cereal fields. Computer and Electronics in Agriculture, 2000; 25(3): 197–212. doi: 10.1016/S0168-1699(99) 00068-X.
Hunt E R, Cavigelli M, Daughtry C T, Mcmurtrey J E, Walthall C L. Evaluation of digital photography from model aircraft for remote sensing of crop biomass and nitrogen status. Precision Agriculture, 2005; 6(4): 359–378. doi: 10.1007/s11119-005-2324 -5.
Meyer G E, João C N. Verification of color vegetation indices for automated crop imaging applications. Computer and Electronics in Agriculture, 2008; 63(2): 282–293. doi: 10.1016/j. compag.2008.03.009.
Meyer G E, João C N, David D J. Timothy W H. Intensified fuzzy clusters for classifying plant, soil, and residue regions of interest from color images. Computer and Electronics in Agriculture, 2004; 42(3): 161–180. doi: 10.1016/j.compag.2003. 08.002.
João C N, Meyer G E, David D J. Individual leaf extractions from young canopy images using Gustafson–Kessel clustering and a genetic algorithm. Computer and Electronics in Agriculture, 2006; 51(1): 66–85. doi: 10.1016/j.compag.2005.11.002.
Sun G X, Li Y B, Zhang Y, Wang X C, Chen M, Li X, et al.
Nondestructive measurement method for greenhouse cucumber parameters based on machine vision. Engineering in Agriculture, Environment and Food, 2016; 9: 70–78. doi: 10.1016/j.eaef. 2015.06.003.
Sun G X, Wang X C, Yan T T, Li X, Chen M, Shi Y Y. Inversion method of flora growth parameters based on machine vision. Transactions of the CSAE, 2014; 30(20): 187–195. (in Chinese with English abstract) doi: 10.3969 /j.issn.1002-6819.2014.20.023.
Jobson D J, Rahman Z, Woodell G A. Properties and performance of a center/surround retinex. IEEE Transactions on Image Processing, 1997; 6(3): 451–462. doi: 10.1109/83.557356.
Jobson D J, Rahman Z, Woodell G A. A multiscale retinex for bridging the gap between color images and the human observation of scenes. IEEE Transactions on Image Processing, 1997; 6(7): 965–976. doi: 10.1109/83.597272.
Rahman Z, Jobson D J, Woodell G A. Retinex processing for automatic image enhancement. Journal of Electronic Imaging, 2004; 13(1): 100–110. doi: 10.1117/1.1636183.
Rahman Z, Jobson D J, Woodell G A. Retinex processing for automatic image enhancement. Proc. SPIE 4662, Human Vision and Electronic Imaging VII, 2002; 390–401.
Xiong J T, Zou X J, Wang H J, Peng H X, Zhu M S, Lin G C. Recognition of ripe litchi in different illumination conditions based on Retinex image enhancement. Transactions of the CSAE, 2013; 29(12): 170–178. (in Chinese with English abstract)
Wang L Z, Yao X T, Meng Z, Liu T G, Li Z H, Shi B Y, et al. An optical coherence tomography attenuation compensation algorithm based on adaptive multi-Scale Retinex. Chinese Journal of Lasers, 2013; 40(12): 1–6. (in Chinese with English abstract) doi: 10.3788/CJL201340. 1204001.
Li J C, Zhou L M, Liu J. Algorithm for remote sensing image enhancement based on multiscale Retinex Theory. Journal of Xi’an Technological University, 2014; 34(1): 27–33. (in Chinese with English abstract)
Land E H, McCann J J. Lightness and retinex theory. Journal of the Optical society of America, 1971; 61(1): 1–11. doi: 10.1364/ josa.61.000001.
Hiroshi O, Won S L. Green citrus detection using hyperspectral imaging. Computer and Electronics in Agriculture, 2009; 66(2): 201–208. doi: 10.1016/j.compag. 2009.02.004.
Otsu N. A threshold selection method from gray-level histogram. IEEE Transactions on Systems, Man, and Cybernetics, 1979; 9(1): 62–66.
Luscier J D, Thompson W L, Wilson J M, Gorham B E, Dragut L D. Using digital photographs and object-based image analysis to estimate percent ground cover in vegetation plots. Frontiers in Ecology and the Environment, 2006; 4(8): 408–413.
Copyright (c)