Experiment and simulation research of storage for small grain steel silo

zhang Ledao, Chen Xi, Liu Hang, Peng Wei, Zhang Zhongjie, Ren Guangyue

Abstract


Knowing the temperature distribution in silo is a convenient and efficient way to control the process of grain storage. A three-dimensional (3-D) numerical model was used to study the temperature variation in small grain steel silo under quasi-steady state. In this study, experiments were conducted and porous media model was adopted. Results of numerical simulation and experiment were compared and the results indicated that grain temperature was influenced by temperature of the wall, grain stacking height, and the distance between grain and wall. The higher the wall temperature, the more the temperature increases. If the wall temperature is low, the effect of wall temperature on temperature distribution is significant. The temperature at the top part of grain varied obviously with the changes of temperature in air layer. Overall, numerical simulation results coincided with experimental results and the model established in this study is valuable for predicting grain temperature in steel silo.
Keywords: small grain steel silo, quasi-steady state storage, numerical simulation, porous media model, grain storage
DOI: 10.3965/j.ijabe.20160903.1946

Citation: Zhang L D, Chen X, Liu H, Peng W, Zhang Z J, Ren G Y. Experiment and simulation research of storage for small grain steel silo. Int J Agric & Biol Eng, 2016; 9(3): 170-178.

Keywords


small grain steel silo, quasi-steady state storage, numerical simulation, porous media model, grain storage

Full Text:

PDF

References


Omolola A O, Jideani A I O, Kapila P F. Modeling microwave drying kinetics and moisture diffusivity of Mabonde banana variety. Int J Agric & Biol Eng, 2014; 7(6): 107–113. doi: 10.3965/j.ijabe.20140706.013.

Arias Barreto A, Abalone R, Gastón A, Bartosik R. Analysis of storage conditions of a wheat silo-bag for different weather conditions by computer simulation. Biosyst. Eng., 2013; 116(4): 497–508. doi: 10.1016/j.biosystemseng.2013.10. 012.

Kalaivani K, Chitra Devi V. Mathematical modeling on drying of Syzygium Cumini(L.). Int J Agric & Biol Eng, 2013; 6(4): 96–103. doi: 10.3965/j.ijabe.20130604.011.

Silva L C, Queiroz D M, Flores R A, Melo E C. A simulation toolset for modeling grain storage facilities. J. Stored Prod. Res., 2012; 48: 30–36. doi: 10.1016/ j.jspr.2011.09.001.

Ceseviciene J, Masauskiene A. The variation of technological properties of stored winter wheat grain. Zemdirbyste, 2009; 96(1): 154–169. wos: 000271523500011.

Lawrence J, Maier D E. Prediction of temperature distributions in peaked, leveled and inverted cone grain mass configurations during aeration of corn. Appl. Eng. Agric., 2012; 28(5): 685–692. wos: 000310492600008.

Wang G, Liu S C, Wen Q, Zhao H, Zhao Y. Research on granary temperature network monitoring system based on the linear frequency shift of spectrum. Spectrosc. Spect. Anal., 2013; 33(4): 1146–1150. doi: 10.3964/j.issn.1000-0593(2013)04- 1146-05.

Yan H, Chen G N, Zhou Y G, Liu L. Primary study of temperature distribution measurement in stored grain based on acoustic tomography. Exp. Therm. Fluid Sci., 2012; 42: 55–63. doi: 10.1016/j.expthermflusci.2012.04.010.

Zhang F H, Zhou H L, Zhou X G, Liao Q. Simulation of temperature measurement system for grain storage based on ZigBee technology. 2nd Ieee International Conference on Computer Science and Information Technology, 2009. wos: 000279807800003.

Jian F, Jayas D S, White N D G. Temperature fluctuations and moisture migration in wheat stored for 15 months in a metal silo in Canada. J. Stored Prod. Res., 2009; 45(2): 82–90. doi: 10.1016/j.jspr.2008.09.004.

Barreto A A, Abalone R, Gaston A. Mathematical modeling of momentum, heat and mass transfer in grains stored in silos. Lat. Am. Appl. Res., 2013; 43(4): 385–391. wos: 000335937300014.

Ji Y L, Ma X M, Xi L, Yu H, Zhang H, Che Y C.. Research on a safe wheat storage monitoring and prediction system. New Zeal. J. Agr.Res., 2007; 50(5): 673–678. wos: 000258308200017.

Carrera-Rodríguez M, Martínez-González G M, Navarrete-Bolaños J L, Botello-Álvarez J E, Rico-Martínez R, Jiménez-Islas H. Transient numerical study of the effect of ambient temperature on 2-D cereal grain storage in cylindrical silos. J. Stored Prod. Res., 2011; 47(2): 106–122. doi: 10.1016/j.jspr.2011.01.006.

Carrera-Rodriguez M, Martinez-Gonzalez G M, Navarrete-Bolanos J L, Botello-Álvarez J E, Rico-Martínez R, Jiménez-Islas H. Numerical study of the effect of the environmental temperature in the natural two-dimensional convection of heat in grain stored at cylindrical silos. Rev. Mex. Ing. Quim, 2009; 8(1): 77–91. wos: 000265647900007.

Khatchatourian O A, Binelo M O. Simulation of three-dimensional airflow in grain storage bins. Biosyst. Eng., 2008; 101(2): 225–238. doi: 10.1016/j.biosystemseng. 2008.06.001.

Khatchatourian O A, Binelo M O, de Lima R F. Simulation of soya bean flow in mixed-flow dryers using DEM. Biosyst. Eng., 2014; 123: 68–76. doi: 10.1016/ j.biosystemseng.2014.05.003

Oliveira Rocha K S, Martins J H, Martins M A, Saraz J A O, Filho A F L. Three-dimensional modeling and simulation of heat and mass transfer processes in porous media: an application for maize stored in a flat bin. Drying Technology, 2013; 31(10): 1099–1106. doi: 10.1080/ 07373937.2013.775145.

Lawrence J, Maier D E, Hardin J, Jones C L. Development and validation of a headspace model for a stored grain silo filled to its eave. J. Stored Prod. Res., 2012; 49: 176–183. doi: 10.1016/j.jspr.2012.02.002.

Pereira G G, Prakash M, Cleary P W. SPH modelling of fluid at the grain level in a porous medium. Appl. Math. Model., 2011; 35(4): 1666–1675. doi: 10.1016/j.apm.2010. 09.043.

Ambaw A, Verboven P, Delele M A, Defraeye T, Tijskens E, Schenk A et al. CFD-based analysis of 1-MCP distribution in commercial cool store rooms: porous medium model application. Food Bioprocess Tech., 2014; 7(7): 1903–1916. doi: 10.1007/s11947-013-1190-9.

Barreto A A, Abalone R, Gaston A. Mathematical modeling of momentum, heat and mass transfer in grains stored in silos. Lat. Am. Appl. Res., 2013; 43(4): 377–384. wos: 000335937300013.




Copyright (c)



2023-2026 Copyright IJABE Editing and Publishing Office