Citrus black spot detection using hyperspectral imaging
Abstract
Keywords: citrus black spot, hyperspectral imaging, spectral angle mapper, spectral information divergence, imaging processing
DOI: 10.3965/j.ijabe.20140706.004
Citation: Kim D, Burks T F, Ritenour M A, Qin J W. Citrus black spot detection using hyperspectral imaging. Int J Agric & Biol Eng, 2014; 7(6): 20-27.
Keywords
Full Text:
PDFReferences
Chung K R, Peres N A, Timmer L W. Citrus disease exotic to Florida: Black spot, Available from: http://http://edis.ifas. ufl.edu. Accessed on [2011-03-01,]
Dewdney M M. 2010. Citrus black spot. Citrus Ind. 2010; 91: 19–20.
Dewdney M M, Yates J D, Ritenour M A. Identification of early citrus black spot symptoms (Identificacíon de los SíntomasIniciales de la Mancha Negra de los Cítricos). Available from: http://edis.ifas.ufl.edu/pp285. Accessed on [2011-07-01].
Jimenez A R, Ceres R, Pons J L. A survey of computer vision methods for locating fruit on trees. Transactions of the. ASABE. 2010; 43: 1911–1920.
Requnathan M, Lee W S. Citrus fruit identification and size determination using machine vision and ultrasonic sensors. paper no. 053017. In: ASAE Annual International Meeting. 17 July, Tampa Convention Center, Tampa, Florida, USA. American Society of Agricultural Engineers, Tampa, USA, 2005.
Burks T F, Shearer S A, Payne F A. Classification of weed species using color texture features and discriminant analysis. Transactions of the ASAE, 2000; 43: 441–448.
Tang L, Tian L F, Steward B L. Classification of broadleaf and grass weeds and an artificial neural network. Transactions of the ASAE, 2003; 46: 1247–1254.
Pydipati R, Bu Tang rks T F, Lee W S. Identification of citrus dis¬ease using color texture features and discriminant analysis. Comput. Electron. Agr., 2006; 52: 49–59.
Du C J, Sun D W. Correlating image texture features ex-tracted by five different methods with the tenderness of cooked pork ham: a feasibility study. Transactions of the ASAE, 2006; 49: 441–448.
Sun D W. Hyperspectral imaging for food quality analysis and control. Academic Press, Elsevier, San Diego, USA, 2006.
Jiang L, Zhu B, Rao X, Berney G, Tao Y. Discrimination of black walnut shell and pulp in hyper spectral fluorescence imagery using Gaussian kernel function approach. J. Food Eng., 2007; 81: 108–117.
Zhang Y, He X J, Han J H. Texture feature-based image classification using wavelet package transform. Advances in Intelligent Computing, 2005; 3644: 165–173.
Kim M S, Chen Y R, Mehl P M. Hyperspectral reflectance and fluorescence imaging system for food quality and safety. Transactions of the ASAE, 2001; 44: 721–729.
Lee K J, Kang S, Kim M S, Noh S H. Hyper-spectral imaging for detection defect on apple. paper no. 053075. In: ASAE Annual International Meeting. 17 July, Tampa Convention Center, Tampa, Florida, USA. American Society of Agricultural Engineers, Tampa, USA, 2005.
Park B, Windham W R, Lawrence K C, Smith D P. Con-taminant classification of poultry hyperspectral imagery using a spectral angle mapper algorithm. Biosyst. Eng., 2007; 96: 323–333.
Qin J, Burks T F, Ritenour M A, Bonn W G. Detection of citrus canker using hyperspectral reflectance imaging with spectral information divergence. J. Food Eng., 2009; 93: 183–191.
Yang C, Everitt J H, Bradford J M. Yield estimation from hyperspectral imagery using spectral angle mapper (SAM). Transactions of the ASABE, 2008; 51: 729–737.
Shippert P. Introduction to hyperspectral image analysis. Available from http://spacejournal.ohio.edu/pdf/shippert.pdf. Accessed on [2011-07-15].
Du Y, Chang C I, Ren H, Chang C C, Jensen J O. New hyperspectral discrimination measure for spectral characterization. Opt. Eng., 2004; 43: 1777–1788.
Chang C I. Spectral information divergence for hyperspectral image analysis. In: International Geoscience and Remote Sensing Symposium. 28 June, Congress Center, Hamburg, Germany. IEEE Publications, Hamburg, Germany, 1999; pp. 509–511.
Copyright (c)