Advances in the chemical modification of nanocellulose for biodegradable plastics reinforcement

Shuya Zhang, Mingda Che, Renliang Huang, Mei Cui, Wei Qi, Rongxin Su

Abstract


As non-degradable traditional plastics contribute to environmental pollution, biodegradable polymers have been identified as a promising alternative. However, inherent drawbacks such as low toughness, poor tensile strength, and reduced thermal degradation temperatures limit the further development of biodegradable polymers. Nanocellulose has the potential to enhance the properties of biodegradable polymers without compromising their biodegradability. However, the abundant hydroxyl groups in nanocellulose’s molecular chains result in poor compatibility with hydrophobic polymers, requiring surface modification prior to their combination. This review first introduces several common biodegradable polymers and three types of nanocellulose, followed by a comprehensive analysis of the recent advancements in the chemical modification methods of nanocellulose over the last five years. These methods encompass esterification, oxidation, silylation, and graft modification. The focus of this discussion is primarily on the modification strategies, enhancement effects, and mechanisms. Furthermore, the degradability and applications of modified nanocellulose composites are summarized. Finally, the main challenges hindering the development of chemically modified nanocellulose-reinforced biodegradable polymers are proposed. It is hoped that this review will inspire future researchers to develop industrially valuable chemically modified nanocellulose-reinforced biodegradable polymers.
Keywords: biodegradable polymers, nanocellulose; surface modification, reinforcement mechanisms, degradability, application
DOI: 10.25165/j.ijabe.20251801.9479

Citation: Zhang S Y, Che M D, Huang R L, Cui M, Qi W, Su R X. Advances in the chemical modification of nanocellulose for biodegradable plastics reinforcement. Int J Agric & Biol Eng, 2025; 18(1): 10–24.

Keywords


biodegradable polymers, nanocellulose; surface modification, reinforcement mechanisms, degradability, application

Full Text:

PDF

References


Jambeck J R, Geyer R, Wilcox C, Siegler T R, Perryman M, Andrady A, et al. Plastic waste inputs from land into the ocean. Science, 2015; 347(6223): 768–771.

Kang P, Morrow G, Zhang X L, Wang T P, Tan Z F, Agarwal J. Systematic comparison of hydrogen production from fossil fuels and biomass resources. Int J Agric & Biol Eng, 2017; 10(6): 192–200.

Mohanty A K, Vivekanandhan S, Pin J-M, Misra M. Composites from renewable and sustainable resources: Challenges and innovations. Science, 2018; 362(6414): 536–542.

Zeng S H, Duan P P, Shen M X, Xue Y J, Wang Z Y. Preparation and degradation mechanisms of biodegradable polymer: A review. IOP Conference Series: Materials Science and Engineering, 2016; 137(1): 012003.

Pinaeva L G, Noskov A S. Biodegradable biopolymers: Real impact to environment pollution. Science of The Total Environment, 2024; 947: 174445.

Zhou L, Ke K, Yang M-B, Yang W. Recent progress on chemical modification of cellulose for high mechanical-performance Poly(lactic acid)/Cellulose composite: A review. Composites Communications, 2021; 23: 100548.

Park H, He H T, Yan X, Liu X, Scrutton N S, Chen G-Q. PHA is not just a bioplastic! Biotechnology Advances, 2024; 71: 108320.

Sudamrao Getme A, Patel B. A Review: Bio-fiber’s as reinforcement in composites of polylactic acid (PLA). Materials Today: Proceedings, 2020; 26: 2116–2122.

Sreekumar P A, Al-Harthi M A, De S K. Reinforcement of starch/polyvinyl alcohol blend using nano-titanium dioxide. Journal of Composite Materials, 2012; 46(25): 3181–3187.

Calvino C, Macke N, Kato R, Rowan S J. Development, processing and applications of bio-sourced cellulose nanocrystal composites. Progress in Polymer Science, 2020; 103: 101221.

Habibi Y. Key advances in the chemical modification of nanocelluloses. Chemical Society Reviews, 2014; 43(5): 1519–1542.

Abdul Khalil H P S, Davoudpour Y, Islam M N, Mustapha A, Sudesh K, Dungani R, et al. Production and modification of nanofibrillated cellulose using various mechanical processes: A review. Carbohydrate Polymers, 2014; 99: 649–665.

Si Y X, Lin Q Q, Zhou F., Qing J R, Luo H Z, Zhang C L, et al. The interaction between nanocellulose and microorganisms for new degradable packaging: A review. Carbohydrate Polymers, 2022; 295: 119899.

Cui L, Yi L, Hegyesi N, Wang Y, Sui X, Pukánszky B. Biodegradation of poly(lactic acid)/regenerated cellulose nanocomposites prepared by the Pickering emulsion approach. Industrial Crops and Products, 2022; 187: 115411.

Ventura-Cruz S, Tecante A. Nanocellulose and microcrystalline cellulose from agricultural waste: Review on isolation and application as reinforcement in polymeric matrices. Food Hydrocolloids, 2021; 118: 106771.

Liu H Y, Xu T, Cai C Y, Liu K, Liu W, Zhang M, et al. Multifunctional superelastic, superhydrophilic, and ultralight nanocellulose-based composite carbon aerogels for compressive supercapacitor and strain sensor. Advanced Functional Materials, 2022; 32(26): 2113082.

Xu T, Song Q, Liu K, Liu H Y, Pan J J, Liu W, et al. Nanocellulose-assisted construction of multifunctional MXene-Based aerogels with engineering biomimetic texture for pressure sensor and compressible electrode. Nano-Micro Lett, 2023; 15(1): 98.

Zheng Y, Liu H, Yan L, Yang H Y, Dai L, Si C L. Lignin-based encapsulation of liquid metal particles for flexible and high-efficiently recyclable electronics. Advanced Functional Materials, 2023; 34(7): 2310653.

Yang X P, Biswas S K, Han J Q, Tanpichai S, Li M C, Chen C C, et al. Surface and interface engineering for nanocellulosic advanced materials. Advanced Materials, 2021; 33(28): 2002264.

Oksman K, Aitomäki Y, Mathew A P, Siqueira G, Zhou Q, Butylina S, et al. Review of the recent developments in cellulose nanocomposite processing. Composites Part A: Applied Science and Manufacturing, 2016; 83: 2–18.

Ghasemlou M, Daver F, Ivanova E P, Habibi Y, Adhikari B. Surface modifications of nanocellulose: From synthesis to high-performance nanocomposites. Progress in Polymer Science, 2021; 119: 101418.

Zhou Y H, Fan M Z, Chen L H. Interface and bonding mechanisms of plant fibre composites: An overview. Composites Part B: Engineering, 2016; 101: 31–45.

Babu R P, O’Connor K, Seeram R. Current progress on bio-based polymers and their future trends. Progress in Biomaterials, 2013; 2(1): 8.

Samir A, Ashour F H, Hakim A A A, Bassyouni M. Recent advances in biodegradable polymers for sustainable applications. NPJ Materials Degradation, 2022; 6(1): 68.

Bandehali S, Sanaeepur H, Ebadi Amooghin A, Shirazian S, Ramakrishna S. Biodegradable polymers for membrane separation. Separation and Purification Technology, 2021; 269: 118731.

Lunt J. Large-scale production, properties and commercial applications of polylactic acid polymers. Polymer Degradation and Stability, 1998; 59(1-3): 145–152.

Hu Y, Daoud W A, Cheuk K K L, Lin C S K. Newly developed techniques on polycondensation, ring-opening polymerization and polymer modification: Focus on poly(lactic acid). Materials, 2016; 9(3): 133.

Eubeler J P, Bernhard M, Knepper T P. Environmental biodegradation of synthetic polymers II. Biodegradation of different polymer groups. TrAC Trends in Analytical Chemistry, 2010; 29(1): 84–100.

Barbier-Baudry D, Brachais L, Cretu A, Gattin R, Loupy A, Stuerga D. Synthesis of polycaprolactone by microwave irradiation - An interesting route to synthesize this polymer via green chemistry. Environmental Chemistry Letters, 2003; 1: 19–23.

Rasal R M, Janorkar A V, Hirt D E. Poly(lactic acid) modifications. Progress in Polymer Science, 2010; 35(3): 338–356.

Xing Q, Zhang X Q, Dong X, Liu G M, Wang D J. Low-molecular weight aliphatic amides as nucleating agents for poly (L-lactic acid): Conformation variation induced crystallization enhancement. Polymer, 2012; 53(11): 2306–2314.

Meng D-C, Shen R, Yao H, Chen J-C, Wu Q, Chen G-Q. Engineering the diversity of polyesters. Current Opinion in Biotechnology, 2014; 29: 24–33.

Sirohi R, Prakash Pandey J, Kumar Gaur V, Gnansounou E, Sindhu R. Critical overview of biomass feedstocks as sustainable substrates for the production of polyhydroxybutyrate (PHB). Bioresource Technology, 2020; 311: 123536.

Rafiqah S A, Khalina A, Harmaen A S, Tawakkal I A, Zaman K, Asim M, et al. A Review on Properties and Application of Bio-Based Poly(Butylene Succinate). Polymers (Basel), 2021; 13(9): 1436.

Palsikowski P A, Kuchnier C N, Pinheiro I F, Morales A R. Biodegradation in soil of PLA/PBAT blends compatibilized with chain extender. Journal of Polymers and the Environment, 2018; 26: 330–341.

Zhou S-Y, Huang H-D, Ji X, Yan D-X, Zhong G-J, Hsiao B S, et al. Super-robust polylactide barrier films by building densely oriented lamellae incorporated with ductile in situ nanofibrils of poly(butylene adipate-co-terephthalate). ACS Applied Materials & Interfaces, 2016; 8(12): 8096–8109.

Shung A K, Timmer M D, Jo S, Engel P S, Mikos A G. Kinetics of poly(propylene fumarate) synthesis by step polymerization of diethyl fumarate and propylene glycol using zinc chloride as a catalyst. Journal of Biomaterials Science, Polymer Edition, 2002; 13(1): 95–108.

Raquez J-M, Habibi Y, Murariu M, Dubois P. Polylactide (PLA)-based nanocomposites. Progress in Polymer Science, 2013; 38(10-11): 1504–1542.

da Costa F A T, Parra D F, Cardoso E C L, Güven O. PLA, PBAT, Cellulose nanocrystals (CNCs), and their blends: Biodegradation, compatibilization, and nanoparticle interactions. Journal of Polymers and the Environment, 2023; 31(11): 4662–4690.

Aydemir D, Gardner D J. Biopolymer blends of polyhydroxybutyrate and polylactic acid reinforced with cellulose nanofibrils. Carbohydrate Polymers, 2020; 250: 116867.

Jeon H, Lee M, Yun S, Kang D, Park K-h, Choi S, et al. Fabrication and characterization of 3D-printed biocomposite scaffolds based on PCL and silanated silica particles for bone tissue regeneration. Chemical Engineering Journal, 2019; 360: 519–530.

Fadaie M, Mirzaei E, Geramizadeh B, Asvar Z. Incorporation of nanofibrillated chitosan into electrospun PCL nanofibers makes scaffolds with enhanced mechanical and biological properties. Carbohydrate Polymers, 2018; 199: 628–640.

Cai Z Y, Wan Y, Becker M L, Long Y-Z, Dean D. Poly(propylene fumarate)-based materials: Synthesis, functionalization, properties, device fabrication and biomedical applications. Biomaterials, 2019; 208: 45–71.

Kasper F K, Tanahashi K, Fisher J P, Mikos A G. Synthesis of poly(propylene fumarate). Nature Protocols, 2009; 4(4): 518–525.

Liu W, Liu K, Du H S, Zheng T, Zhang N, Xu T, et al. Cellulose nanopaper: fabrication, functionalization, and applications. Nano-Micro Lett, 2022; 14(1): 104.

Li W, Zhu L Y, Xu Y, Wang G H, Xu T, Si C L. Lignocellulose-Mediated functionalization of liquid metals towards the frontiers of multifunctional materials. Advanced Materials, 2024; 36: 2415761.

Li W, Xu Y, Wang G H, Xu T, Si C L. Design and functionalization of lignocellulose-derived silicon-carbon composites for rechargeable batteries. Advanced Energy Materials, 2024; 14: 2403593.

Nechyporchuk O, Belgacem M N, Bras J. Production of cellulose nanofibrils: A review of recent advances. Industrial Crops and Products, 2016; 93: 2–25.

Lin N, Dufresne A. Nanocellulose in biomedicine: Current status and future prospect. European Polymer Journal, 2014; 59: 302–325.

Wang H, Du H S, Liu K, Liu H Y, Xu T, Zhang S Y, et al. Sustainable preparation of bifunctional cellulose nanocrystals via mixed H2SO4/formic acid hydrolysis. Carbohydrate Polymers, 2021; 266: 118107.

Liu W, Zhang S Y, Liu K, Yang H B, Lin Q Y, Xu T, et al. Sustainable preparation of lignocellulosic nanofibrils and cellulose nanopaper from poplar sawdust. Journal of Cleaner Production, 2023; 384: 135582.

Ifuku S, Nogi M, Abe K, Handa K, Nakatsubo F, Yano H. Surface modification of bacterial cellulose nanofibers for property enhancement of optically transparent composites: Dependence on Acetyl-Group DS. Biomacromolecules, 2007; 8(6): 1973–1978.

Filson P B, Dawson-Andoh B E, Schwegler-Berry D. Enzymatic-mediated production of cellulose nanocrystals from recycled pulp. Green Chemistry, 2009; 11(11): 1808–1814.

Gomri C, Cretin M, Semsarilar M. Recent progress on chemical modification of cellulose nanocrystal (CNC) and its application in nanocomposite films and membranes-A comprehensive review. Carbohydrate Polymers, 2022; 294: 119790.

Ahankari S S, Subhedar A R, Bhadauria S S, Dufresne A. Nanocellulose in food packaging: A review. Carbohydrate Polymers, 2021; 255: 117479.

Xu T, Du H S, Liu H Y, Liu W, Zhang X Y, Si C L, et al. Advanced nanocellulose-based composites for flexible functional energy storage devices. Advanced Materials, 2021; 33(48): 2101368.

Li Q, Yang F L, Zheng G X, Guan Z J. Effects of urea ammonia pretreatment on the batch anaerobic fermentation efficiency of corn stovers. Int J Agric & Biol Eng, 2019; 12(4): 169–173.

Liu K, Wang Y X, Liu W, Zheng C Y, Xu T, Du H S, et al. Bacterial cellulose/chitosan composite materials for biomedical applications. Chemical Engineering Journal, 2024; 494: 153014.

Hao X L, Xu J J, Zhou H Y, Tang W, Li W J, Wang Q W, et al. Interfacial adhesion mechanisms of ultra-highly filled wood fiber/polyethylene composites using maleic anhydride grafted polyethylene as a compatibilizer. Materials & Design, 2021; 212: 110182.

Nagalakshmaiah M, Pignon F, El Kissi N, Dufresne A. Surface adsorption of triblock copolymer (PEO-PPO-PEO) on cellulose nanocrystals and their melt extrusion with polyethylene. RSC Advances, 2016; 6(70): 66224–66232.

Ren Q, Wu M H, Wang L, Zheng W G, Hikima Y, Semba T, et al. Cellulose nanofiber reinforced poly (lactic acid) with enhanced rheology, crystallization and foaming ability. Carbohydrate Polymers, 2022; 286: 119320.

Jamaluddin N, Kanno T, Asoh T-A, Uyama H. Surface modification of cellulose nanofiber using acid anhydride for poly(lactic acid) reinforcement. Materials Today Communications, 2019; 21: 100587.

Hu F, Lin N, Chang P R, Huang J. Reinforcement and nucleation of acetylated cellulose nanocrystals in foamed polyester composites. Carbohydrate Polymers, 2015; 129: 208–215.

Shojaeiarani J, Bajwa D S, Hartman K. Esterified cellulose nanocrystals as reinforcement in poly(lactic acid) nanocomposites. Cellulose, 2019; 26(4): 2349–2362.

Liu S L, Zhang Q, Gou S H, Zhang L L, Wang Z. Esterification of cellulose using carboxylic acid-based deep eutectic solvents to produce high-yield cellulose nanofibers. Carbohydrate Polymers, 2021; 251: 117018.

Mugwagwa L R, Chimphango A F A. Enhancing the functional properties of acetylated hemicellulose films for active food packaging using acetylated nanocellulose reinforcement and polycaprolactone coating. Food Packaging and Shelf Life, 2020; 24: 100481.

Celebi H, Ilgar M, Seyhan A T. Evaluation of the effect of isocyanate modification on the thermal and rheological properties of poly(ε-caprolactone)/cellulose composites. Polymer Bulletin, 2021; 79(7): 4941–4955.

Fijoł N, Aguilar-Sánchez A, Ruiz-Caldas M-X, Redlinger-Pohn J, Mautner A, Mathew A P. 3D printed polylactic acid (PLA) filters reinforced with polysaccharide nanofibers for metal ions capture and microplastics separation from water. Chemical Engineering Journal, 2023; 457: 141153.

Li L Y, Chen Y, Yu T X, Wang N, Wang C S, Wang H P. Preparation of polylactic acid/TEMPO-oxidized bacterial cellulose nanocomposites for 3D printing via Pickering emulsion approach. Composites Communications, 2019; 16: 162–167.

Luo J, Ghaffar S, Chen W C, Gao S S, Jiang Y J. Integration of inorganic ionic oligomers and nanocellulose within PVA networks: A degradable and green nanocomposite with self-healable property and high mechanical strength in a wet state. Polymer, 2023; 284: 126307.

Espinosa E, Bascón-Villegas I, Rosal A, Pérez-Rodríguez F, Chinga-Carrasco G, Rodríguez A. PVA/(ligno) nanocellulose biocomposite films. Effect of residual lignin content on structural, mechanical, barrier and antioxidant properties. International Journal of Biological Macromolecules, 2019; 141: 197–206.

Jiang G, Yu L, Zhang M D, Wang F, Zhang S D. Poly(propylene carbonate)/poly(3-hydroxybutyrate)-based bionanocomposites reinforced with cellulose nanocrystal for potential application as a packaging material. Polymers for Advanced Technologies, 2019; 31(4): 853–863.

Lee H, You J, Jin H-J, Kwak H W. Chemical and physical reinforcement behavior of dialdehyde nanocellulose in PVA composite film: A comparison of nanofiber and nanocrystal. Carbohydrate Polymers, 2020; 232: 115771.

Jin K Y, Tang Y J, Zhu X M, Zhou Y M. Polylactic acid based biocomposite films reinforced with silanized nanocrystalline cellulose. International Journal of Biological Macromolecules, 2020; 162: 1109–1117.

Kargarzadeh H, Sheltami R M, Ahmad I, Abdullah I, Dufresne A. Cellulose nanocrystal reinforced liquid natural rubber toughened unsaturated polyester: Effects of filler content and surface treatment on its morphological, thermal, mechanical, and viscoelastic properties. Polymer, 2015; 71: 51–59.

Zhang P B, Lu Y D, Fan M M, Jiang P P, Dong Y M. Modified cellulose nanocrystals enhancement to mechanical properties and water resistance of vegetable oil-based waterborne polyurethane. Journal of Applied Polymer Science, 2019; 136(47): 48228.

Dhali K, Daver F, Cass P, Field M R, Adhikari B. Development and characterisation of poly(butylene adipate-co-terephthalate)- silane modified cellulose nanocrystals composite materials and films. Journal of Polymers and the Environment, 2023; 31(10): 4506–4521.

Goussé C, Chanzy H, Excoffier G, Soubeyrand L, Fleury E. Stable suspensions of partially silylated cellulose whiskers dispersed in organic solvents. Polymer, 2002; 43(9): 2645–2651.

Goussé C, Chanzy H, Cerrada M L, Fleury E. Surface silylation of cellulose microfibrils: preparation and rheological properties. Polymer, 2004; 45(5): 1569–1575.

Sai H Z, Fu R, Xing L, Xiang J H, Li Z Y, Li F, et al. Surface modification of bacterial cellulose aerogels’ web-like skeleton for oil/water separation. ACS Applied Materials & Interfaces, 2015; 7(13): 7373–7381.

Stenstad P, Andresen M, Tanem B S, Stenius P. Chemical surface modifications of microfibrillated cellulose. Cellulose, 2008; 15(1): 35–45.

Wang Z R, Jin K X, Lim K H, Liu P W, Lu D, Yang X, et al. Biodegradable poly(butylene adipate-co-terephthalate) nanocomposites reinforced with in situ fibrillated nanocelluloses. ACS Sustainable Chemistry & Engineering, 2023; 11(27): 9947–9955.

Yin Y Y, Tian X Z, Jiang X, Zhu P. Modification of cellulose nanocrystals via surface-initiated ARGET ATRP and their reinforcement of poly(lactic acid)-based biocomposites. Industrial Crops and Products, 2022; 188: 115575.

Barbosa R F S, Souza A G, Rosa D S. Acetylated cellulose nanostructures as reinforcement materials for PBAT nanocomposites. Polymer Composites, 2020; 41(7): 2841–2854.

Niu W D, Guo Y F, Huang W, Song L L, Xiao Z F, Xie Y J, et al. Aliphatic chains grafted cellulose nanocrystals with core-corona structures for efficient toughening of PLA composites. Carbohydrate Polymers, 2022; 285: 119200.

Chuensangjun C, Kitaoka T, Chisti Y, Sirisansaneeyakul S. Chemo-enzymatic preparation and characterization of cellulose nanofibers-graft-poly(lactic acid)s. European Polymer Journal, 2019; 114: 308–318.

Kwak H, Kim H, Park S-A, Lee M, Jang M, Park S B, et al. Biodegradable, water-resistant, anti-fizzing, polyester nanocellulose composite paper straws. Advanced Science, 2022; 10(1): 2205554.

Carlsson L, Ingverud T, Blomberg H, Carlmark A, Larsson P T, Malmström E. Surface characteristics of cellulose nanoparticles grafted by surface-initiated ring-opening polymerization of ε-caprolactone. Cellulose, 2015; 22(2): 1063–1074.

Lalanne-Tisne M, Mees M A, Eyley S, Zinck P, Thielemans W. Organocatalyzed ring opening polymerization of lactide from the surface of cellulose nanofibrils. Carbohydrate Polymers, 2020; 250: 116974.

Lönnberg H, Larsson K, Lindstrom T, Hult A, Malmstrom E. Synthesis of polycaprolactone-grafted microfibrillated cellulose for use in novel bionanocomposites-influence of the graft length on the mechanical properties. ACS Applied Materials & Interfaces, 2011; 3(5): 1426–1433.

Kim J-K, Bandi R, Dadigala R, Hai L V, Han S-Y, Kwon G-J, et al. Esterification of nanofibrillated cellulose using lauroyl chloride and its composite films with polybutylene succinate. BioResources, 2023; 18(4): 7143–7153.

Wu C Q, Zhang X Z, Wang X H, Gao Q W, Li X N. Surface modification of cellulose nanocrystal using succinic anhydride and its effects on poly(butylene succinate) based composites. Cellulose, 2019; 26(5): 3167–3181.

Pal N, Banerjee S, Roy P, Pal K. Reduced graphene oxide and PEG-grafted TEMPO-oxidized cellulose nanocrystal reinforced poly-lactic acid nanocomposite film for biomedical application. Materials Science & Engineering C-Materials for Biological Applications, 2019; 104: 109956.

Averianov I V, Stepanova M A, Gofman I V, Nikolaeva A L, Korzhikov-Vlakh V A, Karttunen M, et al. Chemical modification of nanocrystalline cellulose for improved interfacial compatibility with poly(lactic acid). Mendeleev Communications, 2019; 29(2): 220–222.

Mai V-D, Kang D, Kim Y, Jang Y, Min J, Han J-h, et al. Preparation and environmental analysis of biodegradable polylactic acid and modified cellulose nanofiber composites. Journal of Industrial and Engineering Chemistry, 2024; 130: 401–411.

Lai L, Wang S L, Li J X, Liu P W, Wu L B, Wu H Q, et al. Stiffening, strengthening, and toughening of biodegradable poly(butylene adipate-co-terephthalate) with a low nanoinclusion usage. Carbohydrate Polymers, 2020; 247: 116687.

Leja K, Lewandowicz G. Polymer biodegradation and biodegradable polymers-a review. Polish Journal of Environmental Studies, 2010; 19(2): 255–266.

Zheng G X, Lu Z X, Li J, Ai S, Sun Y. Screening and performance of L-14, a novel, highly efficient and low temperature-resistant cellulose-degrading strain. Int J Agric & Biol Eng, 2020; 13(1): 247–254.

Sucinda E F, Abdul Majid M S, Ridzuan M J M, Cheng E M, Alshahrani H A, Mamat N. Development and characterisation of packaging film from Napier cellulose nanowhisker reinforced polylactic acid (PLA) bionanocomposites. International Journal of Biological Macromolecules, 2021; 187: 43–53.

Xu A, Wang Y X, Gao J, Wang J J. Facile fabrication of a homogeneous cellulose/polylactic acid composite film with improved biocompatibility, biodegradability and mechanical properties. Green Chemistry, 2019; 21(16): 4449–4456.

Morelli C L, Belgacem N, Bretas R E S, Bras J. Melt extruded nanocomposites of polybutylene adipate-co-terephthalate (PBAT) with phenylbutyl isocyanate modified cellulose nanocrystals. Journal of Applied Polymer Science, 2016; 133(34): 43678.

Chen Y, Lu T T, Li L Y, Zhang H Y, Wang H P, Ke F Y. Fully biodegradable PLA composite with improved mechanical properties via 3D printing. Materials Letters, 2023; 331: 133543.

Mendoza D J, Browne C, Raghuwanshi V S, Mouterde L M M, Simon G P, Allais F, et al. Phenolic ester-decorated cellulose nanocrystals as UV-absorbing nanoreinforcements in polyvinyl alcohol films. ACS Sustainable Chemistry & Engineering, 2021; 9(18): 6427–6437.

Montero Y, Souza A G, Oliveira É R, Rosa D d S. Nanocellulose functionalized with cinnamon essential oil: A potential application in active biodegradable packaging for strawberry. Sustainable Materials and Technologies, 2021; 29: e00289.

Yang Y C, Zhong M Y, Wang W Q, Lu N, Gou Y K, Cai W L, et al. Engineering biodegradable bacterial cellulose/polylactic acid multi-scale fibrous membrane via co-electrospinning-electrospray strategy for efficient, wet-stable, durable PM0.3 filtration. Separation and Purification Technology, 2025; 352: 128143.

Zhou H, Yan L, Tang D X, Xu T, Dai L, Li C Y, et al. Solar-driven drum-type atmospheric water harvester based on bio-based gels with fast adsorption/desorption kinetics. Advanced Materials, 2024; 36(32): 2403876.

Yi Q, Lu S, Fan Y T, Cheng D H, Wang X M, Cheng S L, et al. Preparation and adsorption performance of cellulose nanofibrils/polyvinyl alcohol composite gel spheres with millimeter size. Carbohydrate Polymers, 2022; 277: 118850.




Copyright (c) 2025 International Journal of Agricultural and Biological Engineering

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

2023-2026 Copyright IJABE Editing and Publishing Office