Advances in the chemical modification of nanocellulose for biodegradable plastics reinforcement
Abstract
Keywords: biodegradable polymers, nanocellulose; surface modification, reinforcement mechanisms, degradability, application
DOI: 10.25165/j.ijabe.20251801.9479
Citation: Zhang S Y, Che M D, Huang R L, Cui M, Qi W, Su R X. Advances in the chemical modification of nanocellulose for biodegradable plastics reinforcement. Int J Agric & Biol Eng, 2025; 18(1): 10–24.
Keywords
Full Text:
PDFReferences
Jambeck J R, Geyer R, Wilcox C, Siegler T R, Perryman M, Andrady A, et al. Plastic waste inputs from land into the ocean. Science, 2015; 347(6223): 768–771.
Kang P, Morrow G, Zhang X L, Wang T P, Tan Z F, Agarwal J. Systematic comparison of hydrogen production from fossil fuels and biomass resources. Int J Agric & Biol Eng, 2017; 10(6): 192–200.
Mohanty A K, Vivekanandhan S, Pin J-M, Misra M. Composites from renewable and sustainable resources: Challenges and innovations. Science, 2018; 362(6414): 536–542.
Zeng S H, Duan P P, Shen M X, Xue Y J, Wang Z Y. Preparation and degradation mechanisms of biodegradable polymer: A review. IOP Conference Series: Materials Science and Engineering, 2016; 137(1): 012003.
Pinaeva L G, Noskov A S. Biodegradable biopolymers: Real impact to environment pollution. Science of The Total Environment, 2024; 947: 174445.
Zhou L, Ke K, Yang M-B, Yang W. Recent progress on chemical modification of cellulose for high mechanical-performance Poly(lactic acid)/Cellulose composite: A review. Composites Communications, 2021; 23: 100548.
Park H, He H T, Yan X, Liu X, Scrutton N S, Chen G-Q. PHA is not just a bioplastic! Biotechnology Advances, 2024; 71: 108320.
Sudamrao Getme A, Patel B. A Review: Bio-fiber’s as reinforcement in composites of polylactic acid (PLA). Materials Today: Proceedings, 2020; 26: 2116–2122.
Sreekumar P A, Al-Harthi M A, De S K. Reinforcement of starch/polyvinyl alcohol blend using nano-titanium dioxide. Journal of Composite Materials, 2012; 46(25): 3181–3187.
Calvino C, Macke N, Kato R, Rowan S J. Development, processing and applications of bio-sourced cellulose nanocrystal composites. Progress in Polymer Science, 2020; 103: 101221.
Habibi Y. Key advances in the chemical modification of nanocelluloses. Chemical Society Reviews, 2014; 43(5): 1519–1542.
Abdul Khalil H P S, Davoudpour Y, Islam M N, Mustapha A, Sudesh K, Dungani R, et al. Production and modification of nanofibrillated cellulose using various mechanical processes: A review. Carbohydrate Polymers, 2014; 99: 649–665.
Si Y X, Lin Q Q, Zhou F., Qing J R, Luo H Z, Zhang C L, et al. The interaction between nanocellulose and microorganisms for new degradable packaging: A review. Carbohydrate Polymers, 2022; 295: 119899.
Cui L, Yi L, Hegyesi N, Wang Y, Sui X, Pukánszky B. Biodegradation of poly(lactic acid)/regenerated cellulose nanocomposites prepared by the Pickering emulsion approach. Industrial Crops and Products, 2022; 187: 115411.
Ventura-Cruz S, Tecante A. Nanocellulose and microcrystalline cellulose from agricultural waste: Review on isolation and application as reinforcement in polymeric matrices. Food Hydrocolloids, 2021; 118: 106771.
Liu H Y, Xu T, Cai C Y, Liu K, Liu W, Zhang M, et al. Multifunctional superelastic, superhydrophilic, and ultralight nanocellulose-based composite carbon aerogels for compressive supercapacitor and strain sensor. Advanced Functional Materials, 2022; 32(26): 2113082.
Xu T, Song Q, Liu K, Liu H Y, Pan J J, Liu W, et al. Nanocellulose-assisted construction of multifunctional MXene-Based aerogels with engineering biomimetic texture for pressure sensor and compressible electrode. Nano-Micro Lett, 2023; 15(1): 98.
Zheng Y, Liu H, Yan L, Yang H Y, Dai L, Si C L. Lignin-based encapsulation of liquid metal particles for flexible and high-efficiently recyclable electronics. Advanced Functional Materials, 2023; 34(7): 2310653.
Yang X P, Biswas S K, Han J Q, Tanpichai S, Li M C, Chen C C, et al. Surface and interface engineering for nanocellulosic advanced materials. Advanced Materials, 2021; 33(28): 2002264.
Oksman K, Aitomäki Y, Mathew A P, Siqueira G, Zhou Q, Butylina S, et al. Review of the recent developments in cellulose nanocomposite processing. Composites Part A: Applied Science and Manufacturing, 2016; 83: 2–18.
Ghasemlou M, Daver F, Ivanova E P, Habibi Y, Adhikari B. Surface modifications of nanocellulose: From synthesis to high-performance nanocomposites. Progress in Polymer Science, 2021; 119: 101418.
Zhou Y H, Fan M Z, Chen L H. Interface and bonding mechanisms of plant fibre composites: An overview. Composites Part B: Engineering, 2016; 101: 31–45.
Babu R P, O’Connor K, Seeram R. Current progress on bio-based polymers and their future trends. Progress in Biomaterials, 2013; 2(1): 8.
Samir A, Ashour F H, Hakim A A A, Bassyouni M. Recent advances in biodegradable polymers for sustainable applications. NPJ Materials Degradation, 2022; 6(1): 68.
Bandehali S, Sanaeepur H, Ebadi Amooghin A, Shirazian S, Ramakrishna S. Biodegradable polymers for membrane separation. Separation and Purification Technology, 2021; 269: 118731.
Lunt J. Large-scale production, properties and commercial applications of polylactic acid polymers. Polymer Degradation and Stability, 1998; 59(1-3): 145–152.
Hu Y, Daoud W A, Cheuk K K L, Lin C S K. Newly developed techniques on polycondensation, ring-opening polymerization and polymer modification: Focus on poly(lactic acid). Materials, 2016; 9(3): 133.
Eubeler J P, Bernhard M, Knepper T P. Environmental biodegradation of synthetic polymers II. Biodegradation of different polymer groups. TrAC Trends in Analytical Chemistry, 2010; 29(1): 84–100.
Barbier-Baudry D, Brachais L, Cretu A, Gattin R, Loupy A, Stuerga D. Synthesis of polycaprolactone by microwave irradiation - An interesting route to synthesize this polymer via green chemistry. Environmental Chemistry Letters, 2003; 1: 19–23.
Rasal R M, Janorkar A V, Hirt D E. Poly(lactic acid) modifications. Progress in Polymer Science, 2010; 35(3): 338–356.
Xing Q, Zhang X Q, Dong X, Liu G M, Wang D J. Low-molecular weight aliphatic amides as nucleating agents for poly (L-lactic acid): Conformation variation induced crystallization enhancement. Polymer, 2012; 53(11): 2306–2314.
Meng D-C, Shen R, Yao H, Chen J-C, Wu Q, Chen G-Q. Engineering the diversity of polyesters. Current Opinion in Biotechnology, 2014; 29: 24–33.
Sirohi R, Prakash Pandey J, Kumar Gaur V, Gnansounou E, Sindhu R. Critical overview of biomass feedstocks as sustainable substrates for the production of polyhydroxybutyrate (PHB). Bioresource Technology, 2020; 311: 123536.
Rafiqah S A, Khalina A, Harmaen A S, Tawakkal I A, Zaman K, Asim M, et al. A Review on Properties and Application of Bio-Based Poly(Butylene Succinate). Polymers (Basel), 2021; 13(9): 1436.
Palsikowski P A, Kuchnier C N, Pinheiro I F, Morales A R. Biodegradation in soil of PLA/PBAT blends compatibilized with chain extender. Journal of Polymers and the Environment, 2018; 26: 330–341.
Zhou S-Y, Huang H-D, Ji X, Yan D-X, Zhong G-J, Hsiao B S, et al. Super-robust polylactide barrier films by building densely oriented lamellae incorporated with ductile in situ nanofibrils of poly(butylene adipate-co-terephthalate). ACS Applied Materials & Interfaces, 2016; 8(12): 8096–8109.
Shung A K, Timmer M D, Jo S, Engel P S, Mikos A G. Kinetics of poly(propylene fumarate) synthesis by step polymerization of diethyl fumarate and propylene glycol using zinc chloride as a catalyst. Journal of Biomaterials Science, Polymer Edition, 2002; 13(1): 95–108.
Raquez J-M, Habibi Y, Murariu M, Dubois P. Polylactide (PLA)-based nanocomposites. Progress in Polymer Science, 2013; 38(10-11): 1504–1542.
da Costa F A T, Parra D F, Cardoso E C L, Güven O. PLA, PBAT, Cellulose nanocrystals (CNCs), and their blends: Biodegradation, compatibilization, and nanoparticle interactions. Journal of Polymers and the Environment, 2023; 31(11): 4662–4690.
Aydemir D, Gardner D J. Biopolymer blends of polyhydroxybutyrate and polylactic acid reinforced with cellulose nanofibrils. Carbohydrate Polymers, 2020; 250: 116867.
Jeon H, Lee M, Yun S, Kang D, Park K-h, Choi S, et al. Fabrication and characterization of 3D-printed biocomposite scaffolds based on PCL and silanated silica particles for bone tissue regeneration. Chemical Engineering Journal, 2019; 360: 519–530.
Fadaie M, Mirzaei E, Geramizadeh B, Asvar Z. Incorporation of nanofibrillated chitosan into electrospun PCL nanofibers makes scaffolds with enhanced mechanical and biological properties. Carbohydrate Polymers, 2018; 199: 628–640.
Cai Z Y, Wan Y, Becker M L, Long Y-Z, Dean D. Poly(propylene fumarate)-based materials: Synthesis, functionalization, properties, device fabrication and biomedical applications. Biomaterials, 2019; 208: 45–71.
Kasper F K, Tanahashi K, Fisher J P, Mikos A G. Synthesis of poly(propylene fumarate). Nature Protocols, 2009; 4(4): 518–525.
Liu W, Liu K, Du H S, Zheng T, Zhang N, Xu T, et al. Cellulose nanopaper: fabrication, functionalization, and applications. Nano-Micro Lett, 2022; 14(1): 104.
Li W, Zhu L Y, Xu Y, Wang G H, Xu T, Si C L. Lignocellulose-Mediated functionalization of liquid metals towards the frontiers of multifunctional materials. Advanced Materials, 2024; 36: 2415761.
Li W, Xu Y, Wang G H, Xu T, Si C L. Design and functionalization of lignocellulose-derived silicon-carbon composites for rechargeable batteries. Advanced Energy Materials, 2024; 14: 2403593.
Nechyporchuk O, Belgacem M N, Bras J. Production of cellulose nanofibrils: A review of recent advances. Industrial Crops and Products, 2016; 93: 2–25.
Lin N, Dufresne A. Nanocellulose in biomedicine: Current status and future prospect. European Polymer Journal, 2014; 59: 302–325.
Wang H, Du H S, Liu K, Liu H Y, Xu T, Zhang S Y, et al. Sustainable preparation of bifunctional cellulose nanocrystals via mixed H2SO4/formic acid hydrolysis. Carbohydrate Polymers, 2021; 266: 118107.
Liu W, Zhang S Y, Liu K, Yang H B, Lin Q Y, Xu T, et al. Sustainable preparation of lignocellulosic nanofibrils and cellulose nanopaper from poplar sawdust. Journal of Cleaner Production, 2023; 384: 135582.
Ifuku S, Nogi M, Abe K, Handa K, Nakatsubo F, Yano H. Surface modification of bacterial cellulose nanofibers for property enhancement of optically transparent composites: Dependence on Acetyl-Group DS. Biomacromolecules, 2007; 8(6): 1973–1978.
Filson P B, Dawson-Andoh B E, Schwegler-Berry D. Enzymatic-mediated production of cellulose nanocrystals from recycled pulp. Green Chemistry, 2009; 11(11): 1808–1814.
Gomri C, Cretin M, Semsarilar M. Recent progress on chemical modification of cellulose nanocrystal (CNC) and its application in nanocomposite films and membranes-A comprehensive review. Carbohydrate Polymers, 2022; 294: 119790.
Ahankari S S, Subhedar A R, Bhadauria S S, Dufresne A. Nanocellulose in food packaging: A review. Carbohydrate Polymers, 2021; 255: 117479.
Xu T, Du H S, Liu H Y, Liu W, Zhang X Y, Si C L, et al. Advanced nanocellulose-based composites for flexible functional energy storage devices. Advanced Materials, 2021; 33(48): 2101368.
Li Q, Yang F L, Zheng G X, Guan Z J. Effects of urea ammonia pretreatment on the batch anaerobic fermentation efficiency of corn stovers. Int J Agric & Biol Eng, 2019; 12(4): 169–173.
Liu K, Wang Y X, Liu W, Zheng C Y, Xu T, Du H S, et al. Bacterial cellulose/chitosan composite materials for biomedical applications. Chemical Engineering Journal, 2024; 494: 153014.
Hao X L, Xu J J, Zhou H Y, Tang W, Li W J, Wang Q W, et al. Interfacial adhesion mechanisms of ultra-highly filled wood fiber/polyethylene composites using maleic anhydride grafted polyethylene as a compatibilizer. Materials & Design, 2021; 212: 110182.
Nagalakshmaiah M, Pignon F, El Kissi N, Dufresne A. Surface adsorption of triblock copolymer (PEO-PPO-PEO) on cellulose nanocrystals and their melt extrusion with polyethylene. RSC Advances, 2016; 6(70): 66224–66232.
Ren Q, Wu M H, Wang L, Zheng W G, Hikima Y, Semba T, et al. Cellulose nanofiber reinforced poly (lactic acid) with enhanced rheology, crystallization and foaming ability. Carbohydrate Polymers, 2022; 286: 119320.
Jamaluddin N, Kanno T, Asoh T-A, Uyama H. Surface modification of cellulose nanofiber using acid anhydride for poly(lactic acid) reinforcement. Materials Today Communications, 2019; 21: 100587.
Hu F, Lin N, Chang P R, Huang J. Reinforcement and nucleation of acetylated cellulose nanocrystals in foamed polyester composites. Carbohydrate Polymers, 2015; 129: 208–215.
Shojaeiarani J, Bajwa D S, Hartman K. Esterified cellulose nanocrystals as reinforcement in poly(lactic acid) nanocomposites. Cellulose, 2019; 26(4): 2349–2362.
Liu S L, Zhang Q, Gou S H, Zhang L L, Wang Z. Esterification of cellulose using carboxylic acid-based deep eutectic solvents to produce high-yield cellulose nanofibers. Carbohydrate Polymers, 2021; 251: 117018.
Mugwagwa L R, Chimphango A F A. Enhancing the functional properties of acetylated hemicellulose films for active food packaging using acetylated nanocellulose reinforcement and polycaprolactone coating. Food Packaging and Shelf Life, 2020; 24: 100481.
Celebi H, Ilgar M, Seyhan A T. Evaluation of the effect of isocyanate modification on the thermal and rheological properties of poly(ε-caprolactone)/cellulose composites. Polymer Bulletin, 2021; 79(7): 4941–4955.
Fijoł N, Aguilar-Sánchez A, Ruiz-Caldas M-X, Redlinger-Pohn J, Mautner A, Mathew A P. 3D printed polylactic acid (PLA) filters reinforced with polysaccharide nanofibers for metal ions capture and microplastics separation from water. Chemical Engineering Journal, 2023; 457: 141153.
Li L Y, Chen Y, Yu T X, Wang N, Wang C S, Wang H P. Preparation of polylactic acid/TEMPO-oxidized bacterial cellulose nanocomposites for 3D printing via Pickering emulsion approach. Composites Communications, 2019; 16: 162–167.
Luo J, Ghaffar S, Chen W C, Gao S S, Jiang Y J. Integration of inorganic ionic oligomers and nanocellulose within PVA networks: A degradable and green nanocomposite with self-healable property and high mechanical strength in a wet state. Polymer, 2023; 284: 126307.
Espinosa E, Bascón-Villegas I, Rosal A, Pérez-Rodríguez F, Chinga-Carrasco G, Rodríguez A. PVA/(ligno) nanocellulose biocomposite films. Effect of residual lignin content on structural, mechanical, barrier and antioxidant properties. International Journal of Biological Macromolecules, 2019; 141: 197–206.
Jiang G, Yu L, Zhang M D, Wang F, Zhang S D. Poly(propylene carbonate)/poly(3-hydroxybutyrate)-based bionanocomposites reinforced with cellulose nanocrystal for potential application as a packaging material. Polymers for Advanced Technologies, 2019; 31(4): 853–863.
Lee H, You J, Jin H-J, Kwak H W. Chemical and physical reinforcement behavior of dialdehyde nanocellulose in PVA composite film: A comparison of nanofiber and nanocrystal. Carbohydrate Polymers, 2020; 232: 115771.
Jin K Y, Tang Y J, Zhu X M, Zhou Y M. Polylactic acid based biocomposite films reinforced with silanized nanocrystalline cellulose. International Journal of Biological Macromolecules, 2020; 162: 1109–1117.
Kargarzadeh H, Sheltami R M, Ahmad I, Abdullah I, Dufresne A. Cellulose nanocrystal reinforced liquid natural rubber toughened unsaturated polyester: Effects of filler content and surface treatment on its morphological, thermal, mechanical, and viscoelastic properties. Polymer, 2015; 71: 51–59.
Zhang P B, Lu Y D, Fan M M, Jiang P P, Dong Y M. Modified cellulose nanocrystals enhancement to mechanical properties and water resistance of vegetable oil-based waterborne polyurethane. Journal of Applied Polymer Science, 2019; 136(47): 48228.
Dhali K, Daver F, Cass P, Field M R, Adhikari B. Development and characterisation of poly(butylene adipate-co-terephthalate)- silane modified cellulose nanocrystals composite materials and films. Journal of Polymers and the Environment, 2023; 31(10): 4506–4521.
Goussé C, Chanzy H, Excoffier G, Soubeyrand L, Fleury E. Stable suspensions of partially silylated cellulose whiskers dispersed in organic solvents. Polymer, 2002; 43(9): 2645–2651.
Goussé C, Chanzy H, Cerrada M L, Fleury E. Surface silylation of cellulose microfibrils: preparation and rheological properties. Polymer, 2004; 45(5): 1569–1575.
Sai H Z, Fu R, Xing L, Xiang J H, Li Z Y, Li F, et al. Surface modification of bacterial cellulose aerogels’ web-like skeleton for oil/water separation. ACS Applied Materials & Interfaces, 2015; 7(13): 7373–7381.
Stenstad P, Andresen M, Tanem B S, Stenius P. Chemical surface modifications of microfibrillated cellulose. Cellulose, 2008; 15(1): 35–45.
Wang Z R, Jin K X, Lim K H, Liu P W, Lu D, Yang X, et al. Biodegradable poly(butylene adipate-co-terephthalate) nanocomposites reinforced with in situ fibrillated nanocelluloses. ACS Sustainable Chemistry & Engineering, 2023; 11(27): 9947–9955.
Yin Y Y, Tian X Z, Jiang X, Zhu P. Modification of cellulose nanocrystals via surface-initiated ARGET ATRP and their reinforcement of poly(lactic acid)-based biocomposites. Industrial Crops and Products, 2022; 188: 115575.
Barbosa R F S, Souza A G, Rosa D S. Acetylated cellulose nanostructures as reinforcement materials for PBAT nanocomposites. Polymer Composites, 2020; 41(7): 2841–2854.
Niu W D, Guo Y F, Huang W, Song L L, Xiao Z F, Xie Y J, et al. Aliphatic chains grafted cellulose nanocrystals with core-corona structures for efficient toughening of PLA composites. Carbohydrate Polymers, 2022; 285: 119200.
Chuensangjun C, Kitaoka T, Chisti Y, Sirisansaneeyakul S. Chemo-enzymatic preparation and characterization of cellulose nanofibers-graft-poly(lactic acid)s. European Polymer Journal, 2019; 114: 308–318.
Kwak H, Kim H, Park S-A, Lee M, Jang M, Park S B, et al. Biodegradable, water-resistant, anti-fizzing, polyester nanocellulose composite paper straws. Advanced Science, 2022; 10(1): 2205554.
Carlsson L, Ingverud T, Blomberg H, Carlmark A, Larsson P T, Malmström E. Surface characteristics of cellulose nanoparticles grafted by surface-initiated ring-opening polymerization of ε-caprolactone. Cellulose, 2015; 22(2): 1063–1074.
Lalanne-Tisne M, Mees M A, Eyley S, Zinck P, Thielemans W. Organocatalyzed ring opening polymerization of lactide from the surface of cellulose nanofibrils. Carbohydrate Polymers, 2020; 250: 116974.
Lönnberg H, Larsson K, Lindstrom T, Hult A, Malmstrom E. Synthesis of polycaprolactone-grafted microfibrillated cellulose for use in novel bionanocomposites-influence of the graft length on the mechanical properties. ACS Applied Materials & Interfaces, 2011; 3(5): 1426–1433.
Kim J-K, Bandi R, Dadigala R, Hai L V, Han S-Y, Kwon G-J, et al. Esterification of nanofibrillated cellulose using lauroyl chloride and its composite films with polybutylene succinate. BioResources, 2023; 18(4): 7143–7153.
Wu C Q, Zhang X Z, Wang X H, Gao Q W, Li X N. Surface modification of cellulose nanocrystal using succinic anhydride and its effects on poly(butylene succinate) based composites. Cellulose, 2019; 26(5): 3167–3181.
Pal N, Banerjee S, Roy P, Pal K. Reduced graphene oxide and PEG-grafted TEMPO-oxidized cellulose nanocrystal reinforced poly-lactic acid nanocomposite film for biomedical application. Materials Science & Engineering C-Materials for Biological Applications, 2019; 104: 109956.
Averianov I V, Stepanova M A, Gofman I V, Nikolaeva A L, Korzhikov-Vlakh V A, Karttunen M, et al. Chemical modification of nanocrystalline cellulose for improved interfacial compatibility with poly(lactic acid). Mendeleev Communications, 2019; 29(2): 220–222.
Mai V-D, Kang D, Kim Y, Jang Y, Min J, Han J-h, et al. Preparation and environmental analysis of biodegradable polylactic acid and modified cellulose nanofiber composites. Journal of Industrial and Engineering Chemistry, 2024; 130: 401–411.
Lai L, Wang S L, Li J X, Liu P W, Wu L B, Wu H Q, et al. Stiffening, strengthening, and toughening of biodegradable poly(butylene adipate-co-terephthalate) with a low nanoinclusion usage. Carbohydrate Polymers, 2020; 247: 116687.
Leja K, Lewandowicz G. Polymer biodegradation and biodegradable polymers-a review. Polish Journal of Environmental Studies, 2010; 19(2): 255–266.
Zheng G X, Lu Z X, Li J, Ai S, Sun Y. Screening and performance of L-14, a novel, highly efficient and low temperature-resistant cellulose-degrading strain. Int J Agric & Biol Eng, 2020; 13(1): 247–254.
Sucinda E F, Abdul Majid M S, Ridzuan M J M, Cheng E M, Alshahrani H A, Mamat N. Development and characterisation of packaging film from Napier cellulose nanowhisker reinforced polylactic acid (PLA) bionanocomposites. International Journal of Biological Macromolecules, 2021; 187: 43–53.
Xu A, Wang Y X, Gao J, Wang J J. Facile fabrication of a homogeneous cellulose/polylactic acid composite film with improved biocompatibility, biodegradability and mechanical properties. Green Chemistry, 2019; 21(16): 4449–4456.
Morelli C L, Belgacem N, Bretas R E S, Bras J. Melt extruded nanocomposites of polybutylene adipate-co-terephthalate (PBAT) with phenylbutyl isocyanate modified cellulose nanocrystals. Journal of Applied Polymer Science, 2016; 133(34): 43678.
Chen Y, Lu T T, Li L Y, Zhang H Y, Wang H P, Ke F Y. Fully biodegradable PLA composite with improved mechanical properties via 3D printing. Materials Letters, 2023; 331: 133543.
Mendoza D J, Browne C, Raghuwanshi V S, Mouterde L M M, Simon G P, Allais F, et al. Phenolic ester-decorated cellulose nanocrystals as UV-absorbing nanoreinforcements in polyvinyl alcohol films. ACS Sustainable Chemistry & Engineering, 2021; 9(18): 6427–6437.
Montero Y, Souza A G, Oliveira É R, Rosa D d S. Nanocellulose functionalized with cinnamon essential oil: A potential application in active biodegradable packaging for strawberry. Sustainable Materials and Technologies, 2021; 29: e00289.
Yang Y C, Zhong M Y, Wang W Q, Lu N, Gou Y K, Cai W L, et al. Engineering biodegradable bacterial cellulose/polylactic acid multi-scale fibrous membrane via co-electrospinning-electrospray strategy for efficient, wet-stable, durable PM0.3 filtration. Separation and Purification Technology, 2025; 352: 128143.
Zhou H, Yan L, Tang D X, Xu T, Dai L, Li C Y, et al. Solar-driven drum-type atmospheric water harvester based on bio-based gels with fast adsorption/desorption kinetics. Advanced Materials, 2024; 36(32): 2403876.
Yi Q, Lu S, Fan Y T, Cheng D H, Wang X M, Cheng S L, et al. Preparation and adsorption performance of cellulose nanofibrils/polyvinyl alcohol composite gel spheres with millimeter size. Carbohydrate Polymers, 2022; 277: 118850.
Copyright (c) 2025 International Journal of Agricultural and Biological Engineering

This work is licensed under a Creative Commons Attribution 4.0 International License.