RGB-D visual saliency detection of stacked fruits under poor lighting
Abstract
Keywords: RGB-D salient object detection, multi-branch fusion, depth weighting, mixed supervision, same kind of stacked fruits
DOI: 10.25165/j.ijabe.20251801.8057
Citation: Hua C J, Zou X T, Jiang Y, Yu J F, Chen Y. RGB-D visual saliency detection of stacked fruits under poor lighting.
Int J Agric & Biol Eng, 2025; 18(1): 230–237.
Keywords
Full Text:
PDFReferences
Dewi T, Risma P, Oktarina Y. Fruit sorting robot based on color and size for an agricultural product packaging system. Bulletin of Electrical Engineering and Informatics, 2020; 9(4): 1438–1445.
Fan S X, Liang X T, Huang W Q, Zhang V J L, Pang Q, He X, et al. Real-time defects detection for apple sorting using NIR cameras with pruning-based YOLOV4 network. Computers and Electronics in Agriculture, 2022; 193: 106715.
Kumaravel G, Ilankumaran V, Al Maqrashi S A A, Al Yaaqubi M K S. Automated date fruits sorting machine using fuzzy logic controller. International Journal of Recent Technology and Engineering, 2019; 8(4): 1089–1093.
Wang Y, Wang Z T. Salient object detection based on deep network. Electronic Measurement Technology, 2019; 42(21): 101–104. (in Chinese)
Tan D N, Liu Y, Yao L B, Ding Z R, Lu X Q. Semantic segmentation of multi-source remote sensing images based on visual attention mechanism. Journal of Signal Processing, 2022; 38(6): 1180–1191. (in Chinese)
Lyu P F, Wang Y, Wang S Q, Yu X S, Wu C D. Optic disc detection based on visual saliency in fundus image. Journal of Image and Graphics, 2021; 26(9): 2293–2304. (in Chinese)
Arivazhagan S, Shebiah R N, Harini R, Swetha S. Human action recognition from RGB-D data using complete local binary pattern. Cognitive Systems Research, 2019; 58: 94–104.
Liu D, Hu Y S, Zhang K, Chen Z Z. Two-stream refinement network for RGB-D saliency detection. In: 2019 IEEE International Conference on Image Processing (ICIP), Taipei: IEEE, 2019; pp.3925–3929.
Zhao J X, Cao Y, Fan D P, Cheng M M, Li X Y, Zhang L. Contrast prior and fluid pyramid integration for RGBD salient object detection. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, 2020; pp.3922–3931. doi: 10.1109/CVPR.2019.00405.
Singh S K, Srivastava R. SL-Net: Self-learning and mutual attention-based distinguished window for RGBD complex salient object detection. Neural Computing and Applications, 2022; 35: 595–609.
Das D K, Shit S, Ray D N. Depth-guided two-way saliency network for 2D images. In: Advanced computational paradigms and hybrid intelligent computing. Springer, 2022; pp.61–71. doi: 10.1007/978-981-16-4369-9_7.
Ju R, Ge L, Geng W J, Ren T W, Wu G S. Depth saliency based on anisotropic center-surround difference. In: 2014 IEEE International Conference on Image Processing (ICIP), Paris: IEEE, 2014; pp.1115–1119. doi: 10.1109/ICIP.2014.7025222.
Peng H, Li B, Xiong W H, Hu W M, Ji R R. RGBD salient object detection: A benchmark and algorithms. In: Proceedings of the European Conference on Computer Vision (ECCV), 2014; pp.92–109. doi: 10.1007/978-3-319-10578-9_7.
Gao S H, Cheng M M, Zhao K, Zhang X Y, Yang M H, Torr P. Res2Net: A new multi-scale backbone architecture. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019; 43(2): 652–662.
Zhang W B, Ji G P, Wang Z, Fu K R, Zhao Q J. Depth quality-inspired feature manipulation for efficient RGB-D salient object detection. In: Proceedings of the 29th ACM International Conference on Multimedia, 2021; pp.731–740. doi: 10.1145/3474085.345240.
Zhang P P, Wang D, Lu H C, Wang H Y, Ruan X. Amulet: Aggregating multi-level convolutional features for salient object detection. In: 2017 IEEE International Conference on Computer Vision (ICCV), Venice: IEEE, 2017; pp.202–211. doi: 10.1109/ICCV.2017.31.
Ji W, Li J J, Yu S, Zhang M, Piao Y R, Yao S Y. Calibrated RGB-D salient object detection. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville: IEEE, 2021; pp.9466–9476. doi: 10.1109/CVPR46437.2021.00935.
Wu Z, Su L, Huang Q M. Cascaded partial decoder for fast and accurate salient object detection. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach: IEEE, 2019; pp.3902–3911. doi: 10.1109/CVPR.2019.00403.
Zhou T, Fu H Z, Chen G, Zhou Y, Fan D P, Shao L. Specificity-preserving RGB-D saliency detection. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal: IEEE, 2021; pp.4661–4671. doi: 10.1109/ICCV48922.2021.00464.
Qin X B, Zhang Z C, Huang C Y, Gao C, Dehghan M, Jagersand M. BASNet: Boundary-aware salient object detection. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach: IEEE, 2019; pp.7471–7481. doi: 10.1109/CVPR.2019.00766.
Steiner B, Devito Z, et al. PyTorch: An imperative style, high performance deep learning library. arXiv, 2019; arXiv: 1912.01703. In Press. doi: 10.48550/arXiv.1912.01703.
Kingma D, Ba J. Adam: A method for stochastic optimization. arXiv, 2014; arXiv: 1412.6980. doi: 10.48550/arXiv.1412.6980.
Achanta R, Hemami S, Estrada F, Susstrunk S. Frequency-tuned salient region detection. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami: IEEE, 2009; pp.1597–1604. doi: 10.1109/CVPR.2009.5206596.
Borji A, Cheng M M, Jiang H Z, Li J. Salient object detection: A benchmark. IEEE Transactions on Image Processing, 2015; 24(12): 5706–5722.
Fan D P, Cheng M M, Liu Y, Li T, Borji A. Structure-measure: A new way to evaluate foreground maps. In: 2017 IEEE International Conference on Computer Vision (ICCV), Venice: IEEE, 2017; pp.4558–4567. doi: 10.1109/ICCV.2017.487.
Fan D P, Lin Z, Zhang Z, Zhu M L, Cheng M M. Rethinking RGB-D salient object detection: Models, data sets, and large-scale benchmarks. IEEE Transactions on Neural Networks and Learning Systems, 2020; 32(5): 2075–2089.
Piao Y J, Ji W, Li J J, Zhang M, Lu H C. Depth-induced multi-scale recurrent attention network for saliency detection. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul: IEEE, 2020; pp.7253–7262. doi: 10.1109/ICCV.2019.00735.
Piao Y R, Rong Z K, Zhang M, Ren W S, Lu H C. A2dele: Adaptive and attentive depth distiller for efficient RGB-D salient object detection. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, 2020; pp.9057–9066. doi: 10.1109/CVPR42600.2020.00908.
Chen T Y, Hu X G, Xiao J, Zhang G F, Wang S J. CFIDNet: Cascaded feature interaction decoder for RGB-D salient object detection. Neural Computing and Applications, 2022; 34(10): 7547–7563.
Cheng Y P, Fu H Z, Wei X X, Xiao J J, Cao X C. Depth enhanced saliency detection method. In: Proceedings of International Conference on Internet Multimedia Computing and Service, 2014; pp.23–27. doi: 10.1145/2632856.2632866.
Copyright (c) 2025 International Journal of Agricultural and Biological Engineering

This work is licensed under a Creative Commons Attribution 4.0 International License.