Bending properties of green forage maize in field

Jun Fu, Zhao Xue, Qiankun Fu, Zhi Chen, Luquan Ren

Abstract


Stalk lodging is prone to occur during the harvesting of green forage corn due to head and root anchorage, resulting in loss of harvest. In particular, the fallen stalk wraps around the head, causing a blockage and increasing the energy cost. To address this problem, the deflection model was analyzed and established and a novel method to explore the field bend characteristics of green forage maize was proposed. The effects of stalk diameter, bending angle, and cutting height on bending stress and Young’s modulus were explored by using the method of in-situ measurement. Additionally, the bending deflection, axial displacement and measuring point displacement were obtained. Experimental results indicate that the stalk diameter and bending angle have a significant influence on bending stress. The bending stress has a positive correlation with bending angle and cutting height, while there is a negative correlation with stalk diameter. On the other hand, the bending angle, stalk diameter, and cutting height are closely related to the Young’s modulus. The mean values of the Young’s modulus decrease as a quadratic function with the increasing diameter and bending angle, while the cutting height has the opposite effect on it. Besides, the average values of bending deflection, axial displacement, and measuring point displacement exhibit an increasing trend when the bending angle and cutting height increase. This study results can provide a reference for studying the failure mechanism of green forage maize stalk harvesting, and the design of green forage maize harvesting machinery.
Keywords: green forage maize, field measurement, bending stress, Young’s modulus, deflection model, harvest
DOI: 10.25165/j.ijabe.20231604.8043

Citation: Fu J, Xue Z, Fu Q K, Chen Z, Ren L Q. Bending properties of green forage maize in field. Int J Agric & Biol Eng, 2023; 16(4): 51–57.

Keywords


green forage maize, field measurement, bending stress, Young’s modulus, deflection model, harvest

Full Text:

PDF

References


Grass industry data, 2023. National Animal Husbandry Station. http://www.nahs.org.cn. Accessed on [2022-12-11]

Kovács A, Kerényi G. Physical characteristics and mechanical behaviour of maize stalks for machine development. Int Agrophys, 2019; 33(4): 427-436. doi: 10.31545/intagr/113335.

Guo J, Karkee M, Yang Z, Fu H, Li J, Jiang Y L, et al. Discrete element modeling and physical experiment research on the biomechanical properties of banana bunch stalk for postharvest machine development. Comput Electron Agric, 2021; 188:106308. doi: 10.1016/j.compag.2021.106308.

Slupska M, Dyjakon A, Stopa R. Determination of strength properties of energy plants on the example of Miscanthus Giganteus, Rosa Multiflora and Salix Viminalis. Energies, 2019; 12: 3360. doi:10.3390/en12193660.

Schramm M, Tekeste M Z. Wheat straw direct shear simulation using discrete element method of fibrous bonded model. Biosyst Eng., 2022; 213: 1-12. doi: 10.1016/j.biosystemseng.2021.10.010.

Stubbs C J, Sun W, Cook D D. Measuring the transverse Young’s modulus of maize rind and pith tissues. Journal of biomechanics, 2019; 84: 113-120. doi: 10.1016/j.jbiomech.2018.12.028.

Tang Z, Liang Y Q, Zhang B, Wang M L, Zhang H, Li Y M. Effects of multi-sequence combination forces on creep characteristics of bales during wheat harvesting. Int J Agric & Biol Eng, 2021; 14(5): 88-99. doi: 10.25165/j.ijabe.20211405.6265.

Du D D, Wang J. Research on mechanics properties of crop stalks: A review. Int J Agric & Biol Eng, 2016; 9(6): 10-19. doi: 10.3965/j.ijabe.20160906. 1499.

Francik S, Knapik P, Lapczynska-Kordon B, Francik R, Slipek Z. Values of selected strength parameters of miscanthus×giganteus stalk depending on water content and internode number. Materials, 2022; 15: 1480. doi: 10.3390/ma15041480.

Zhang L X, Yang Z P, Zhang Q, Hu H L. Tensile properties of maize stalk rind. Bioresources, 2016; 11(3): 6151-6161. doi: 10.15376/biores.11.3. 6151-6161.

Robertson D, Smith S, Gardunia B, Cook D. An improved method for accurate phenotyping of corn stalk strength. Crop Sci, 2017; 54: 2038-2044. doi: 10.2135/cropsci 2013.11.0794.

Oduori M F, Mbuya T O, Sakai J, Inoue E. Kinematics of the tined combine harvester reel. Agric Eng Int CIGR J, 2012; 14(3): 53–60.

Oduori M F, Mbuya T O, Sakai J, Inoue E. Modeling of crop stem deflection in the context of combine harvester reel design and operation. Agric Eng Int CIGR J, 2012; 14: 21–28.

Liang R Q, Chen X G, Zhang B C, Peng X B, Meng H W, Jiang P, et al. Tests and analyses on mechanical characteristics of dwarf-dense-early major cotton variety stalks. Int Agrophys, 2020; 34(3): 333-342. doi: 10.31545/intagr/122575.

Chattopadhyay P S, Pandey K P. Mechanical properties of sorghum stalk in relation to quasi-static deformation. J Agric Eng Res, 1999; 73: 199–206. doi: 10.1006/jaer.1999.0406.

İnce A, Uğurluay S, Güzel E, Özcan M T. Bending and shearing characteristics of sunflower stalk residue. Biosyst Eng, 2005; 92(2): 175–181. doi: 10.1016/j.biosystemseng. 2005.07.003.

Liu B, Koc A B. Mechanical properties of switchgrass and miscanthus. Transactions of the ASABE, 2017; 63(3): 581-590. doi: 10.13031/trans.11925.

Du Z, Hu Y G, Buttar N A. Analysis of mechanical properties for tea stem using grey relational analysis coupled with multiple linear regression. Scientia Horticulturae, 2020; 260: 108886. doi: 10.1016/j.scienta.2019.1088 86.

Hirai Y, Inoue E, Matsui M, Mori K, Hashiguchi K. Reaction force of a wheat stalk undergoing forced displacement. J. Jpn. Soc. Agric. Mach., 2003; 65(2): 47–55. doi: 10.11357/jsam1937.65.2_47.

Hirai Y, Inoue E, Matsui M, Mori K, Hashiguchi K. Reaction force and posture of a bunch of wheat stalks undergoing forced displacement. J. Jpn. Soc. Agric. Mach., 2003; 65(2): 56–63. doi: 10.11357/jsam1937.65.2_56.

Hirai Y, Inoue E, Mori K. Numerical analysis of the reaction force of a single rice stalk undergoing forced displacement. Biosyst. Eng., 2003; 86(2): 179–189. doi:10. 1016/S1537-5110(03)00132-6.

Hirai Y, Inoue E, Fukushima T, Ueka I, Mori K. Analysis of the reaction force of a bunch of crop stalks undergoing forced displacement. J. Fac. Agric. Kyushu Univ., 2003; 48(1-2): 175–186.

Hirai Y, Inoue E, Mori K, Hashiguchi K. PM-power and machinery: investigation of mechanical interaction between a combine harvester reel and crop stalks. Biosyst. Eng., 2002; 83(3): 307-317. doi: 10.1006/bioe.2002.0118.

Huang M, Li Y M, Chen A.Y, Xu L Z. Numerical calculation method of deflection deformation of rice stalk. Appl. Sci., 2019; 9: 3125. doi: 10.3390/app9153125.

ASABE Standards. Moisture measurement - forages. ASABE Standards 358.2; ASABE: St. Joseph, MI, USA.

Huang M S, Li Y M, Chen A Y, Xu L Z. Design and test of double-cutterbar structure on wide header for main crop rice harvesting. Appl. Sci., 2020; 10: 4432. doi: 10.3390/app10134432.

Shi Y Y, Chen M, Wang X C, Zhang Y N, Odhiambo M O. Experiment and analysis on mechanical properties of Artemisia selengensis stalk. Int J Agric Biol & Eng, 2017; 10(2): 16–25. doi: 10.3965/j.ijabe.20171002.2660.

Wen B, Li Y, Kan Z, Li J, Li L, Ge J, et al. Experimental research on the bending characteristics of Glycyrrhiza glabra stems. Transactions of the ASABE, 2020; 63(5): 1499-1506. doi: 10.13031/trans.13802.

Tavakoli H, Mohtasebi S S, Jafari, A. Effects of moisture content, internode position and loading rate on the bending characteristics of barley straw. Res. Agric. Eng., 2009; 55(2): 45-51. doi: 10.17221/26/2008-RAE.

Annoussamy M, Richard G, Recous S, Guerif J. Change in mechanical properties of wheat straw due to decomposition and moisture. Appl. Eng. Agric., 2000; 16(6): 657-664. doi: 10.13031/2013.5366.

Nazari Galedar M, Jafari A, Mohtasebi S S, Tabatabaeefar A, Sharifi A, O’Dogherty M J, et al. Richard G. Effects of moisture content and level in the crop on the engineering properties of alfalfa stems. Biosyst. Eng., 2008, 101: 199–208, doi: 10.1016/ j.biosystemseng.2008.07.006.

Shahbazi F, Nazari Galedar M, Taheri-Garavand A, Mohtasebi S S. Physical properties of safflower stalk. Int. Agrophys, 2011; 25: 281-286.

Shahbazi F, Nazari Galedar M. Bending and shearing properties of safflower stalk. J. Agr. Sci. Tech., 2012; 14: 743-754.

Özbek O, Seflek A Y, Carman K. Some mechanical properties of safflower stalk. Appl. Eng. Agric., 2009; 25(4): 619-625. doi: 10.13031/2013.27452.




Copyright (c) 2023 International Journal of Agricultural and Biological Engineering

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

2023-2026 Copyright IJABE Editing and Publishing Office