Downwash airflow distribution pattern of hexa-copter unmanned aerial vehicles
Abstract
Key words: downwash air; payload; rotor propeller; flight height; distribution analysis; flight direction
DOI: 10.25165/j.ijabe.20241704.7754
Citation: Yallappa D, Kavitha R, Surendrakumar A, Balaji K, Suthakar B, Mohan Kumar A P, et al. Downwash airflow distribution pattern of hexa-copter unmanned aerial vehicles. Int J Agric & Biol Eng, 2024; 17(4): 24–34.
Keywords
Full Text:
PDFReferences
Xue X Y. Applications of modern pesticide aerial application technology and the impact on rice quality. PhD dissertation. Jiangsu: Nanjing Agricultural University, 2013: 172p.
Wang X N, He X K, Song J L, Wang Z C, Wang C L, Wang S L, et al. Drift potential of UAV with adjuvants in aerial applications. Int J Agric & Biol Eng, 2018; 11(5): 54–58.
Bae Y, Koo Y M. Flight attitudes and spray patterns of a roll-balanced agricultural unmanned helicopter. Appl. Eng. Agric., 2013; 29: 675–682.
Yang S. Spray droplet deposition and distribution inside crop canopy and control efficiency applied by unmanned aerial vehicle. Master dissertation. Beijing: Chinese Academy of Agricultural Sciences, 2014: pp.1–44.
Li J Y, Lan Y B, Shi Y Y. Research progress on airflow characteristics and field pesticide application system of rotary-wing UAV. Transactions of the CSAE, 2018; 34(12): 104–118. (in Chinese)
Lan Y B, Qian S C, Chen S D, Zhao Y J, Deng X L, Wang G B, et al. Influence of the downwash wind field of plant protection UAV on droplet deposition distribution characteristics at different flight heights. Agronomy, 2021; 11(12): 2399.
Luo B T. Research on droplet deposition characteristics of large-scale plant protection UAV spraying operation. Master dissertation. Jiangsu: Jiangsu University, 2018; 56p.
Li J Y, Zhou Z Y, Lan Y B, Hu L, Zang Y, Liu A M, Luo X W, Zhang T M. Distribution of canopy wind field produced by rotor unmanned aerial vehicle pollination operation. Transactions of the CSAE, 2015; 31(3): 77–86. doi: 10.3969/j.issn.1002-6819.2015. 03.011.
Wu Y L, Qi L J, Zhang H, Musiu E M, Yang Z P, Wang P. Design of UAV downwash airflow field detection system based on strain effect principle. Sensor, 2019; 19(11): 2630.
Yang F B, Xue X Y, Zhang L, Sun Z. Numerical simulation and experimental verification on downwash air flow of six-rotor agricultural unmanned aerial vehicle in hover. Int J Agric & Biol Eng, 2017; 10(4); 41–53.
Guo Q, Zhu Y, Tang Y, Hou C, He Y, Zhuang J, et al. CFD simulation and experimental verification of the spatial and temporal distributions of the downwash airflow of a quad-rotor agricultural UAV in hover. Computers and Electronics in Agriculture, 2020; 172: 105343.
Zhang H X. Investigations on fidelity of high order accurate numerical simulation for computational fluid dynamics. ACTA Aero Dynamica Sinica, 2016; 34(1): 1–4.
Yang F B, Xue X Y, Cai C, Sun Z, Zhou Q Q. Numerical simulation and analysis on spray drift movement of multirotor plant protection unmanned aerial vehicle. Energies, 2018; 11(9): 1–20.
Bai X S, Dafsari R A, Lee J. Downwash flow measurement of the rotor blade for an agricultural spraying drone. KSME Conference paper, 2019, JEJU Island.
Dixon David, Boon S, Silins U. Watershed‐scale controls on snow accumulation in a small montane watershed, southwestern Alberta, Canada. Hydrological Processes, 2014; 28(3): 1294–1306.
Wang X N, He X K, Song J L, Wang Z C, Wang C L, Wang S L, Wu R C, Meng Y H. Drift potential of UAV with adjuvants in aerial applications. Int J Agric & Biol Eng, 2018; 11(5): 54–58.
Tang Q, Zhang R R, Chen L P, Xu M, Yi T C, Zhang B. Droplets movement and deposition of an eight-rotor agricultural UAV in downwash flow field. Int J Agric & Biol Eng, 2017; 10(3): 47–56.
Liu Q, Chen S D, Wang G B, Lan Y B. Drift evaluation of a quadrotor unmanned aerial vehicle (UAV) sprayer: Effect of liquid pressure and wind speed on drift potential based on wind tunnel test. Applied Sciences, 2021; 11(16): 7258.
Wang L, Hou Q H, Wang J P, Wang Z W, Wang S M. Influence of inner tilt angle on downwash airflow field of multi-rotor UAV based on wireless wind speed acquisition system. Int J Agric & Biol Eng, 2021; 14(6): 19–26.
Yang Z L, Ge L Z, Qi L J, Cheng Y F, Wu Y L. Influence of UAV rotor down-wash airflow on spray width. Transactions of the CSAM, 2018; 49(1): 116–122. (in Chinese)
Zhang H Y, Lan Y B, Shen N W, Wu J Y, Wang T, Han J, et al. Numerical analysis of downwash flow field from quad-rotor unmanned aerial vehicles. International Journal of Precision Agricultural Aviation, 2020; 3(4): 1–7.
Berner B, Chojnacki J. Use of drones in crop protection. IX International Scientific Symposium "Farm Machinery and Processes Management in Sustainable Agriculture", 2017. doi: 10.24326/fmpmsa.2017.9.
Choi D S, Ma K C, Kim H J, Lee J H, Oh S A, Kim S G. Control standards of three major insect pests of Chinese cabbage (Brassica campestris) using drones for pesticide application. Korean Journal of Applied Entomology, 2018; 57(4): 347–354.
Zhang H Y, Wen S, Chen C L, Liu Q, Xu T Y, Chen S D, et al. Downwash airflow field distribution characteristics and their effect on the spray field distribution of the DJI T30 six-rotor plant protection UAV. Int J Agric & Biol Eng, 2023; 16(2): 10–22.
Wang C, He X, Wang X, Wang Z, Wang S, Li L, et al. Distribution characteristics of pesticide application droplets deposition of unmanned aerial vehicle based on testing method of deposition quality balance. Transactions of the CSAE, 2016; 32(24): 89–97.
Liu X, Zhang W, Fu H B, Fu X M, Qi L Q. Distribution regularity of downwash airflow under rotors of agricultural UAV for plant protection. Int J Agric & Biol Eng, 2021; 14(3): 46–57.
Tang Q, Zhang R R, Chen L P, Xu M, Yi T C, Zhang B. Droplets movement and deposition of an eight-rotor agricultural UAV in downwash flow field. Int J Agric & Biol Eng, 2017; 10(3): 47–56.
Tan F, Lian Q, Liu C L, Jin B K. Measurement of downwash velocity generated by rotors of agriculture drones. Imateh-Agricultural Engineering, 2019; 55(2): 141–150.
Xue X Y, Tu K, Qin W C, Lan Y B, Zhang H H. Drift and deposition of ultra-low altitude and low volume application in paddy field. Int J Agric & Biol Eng, 2014; 7(4): 23–28.
Ahmad F, Zhang S, Qiu B, Ma J, Xin H, Qiu W, et al. Comparison of water sensitive paper and glass strip sampling approaches to access spray deposit by UAV sprayers. Agronomy, 2022; 12(6): 1302.
Guo S, Li J Y, Yao W X, Zhan Y L, Shi Y Y. Distribution characteristics on droplet deposition of wind field vortex formed by multi-rotor UAV. PloS one, 2019; 14(7): e0220024.
Martin D, Singh V, Latheef M A, Bagavathiannan M. Spray deposition on weeds (Palmer amaranth and Morningglory) from a remotely piloted aerial application system and backpack sprayer. Drones, 2020; 4(3): 59.
Zhu H, Salyani M, Fox R D. A portable scanning system for evaluation of spray deposit distribution. Computers and Electronics in Agriculture, 2011; 76(1): 38–43.
Modather M, Yahya A, Adam M, Suhaizi A, Elsoragaby S. Evaluation of pesticide spraying quality in wetland rice cultivation in Malaysia. Konvensyen Kebangsaan Kejuruteraan Pertanian Dan Makanan 2019, Putrajaya, Malaysia, 2019; pp.233–237.
Chen S D, Lan Y B, Zhou Z Y, Ouyang F, Wang G B, Huang X, et al. Effect of droplet size parameters on droplet deposition and drift of aerial spraying by using plant protection UAV. Agronomy, 2020; 10(2): 195.
Copyright (c) 2024 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.