Novel method for the visual navigation path detection of jujube harvester autopilot based on image processing
Abstract
Keywords: visual navigation path, jujube orchards, image processing, Lab color space, seeded region growing
DOI: 10.25165/j.ijabe.20231605.7638
Citation: Zhang X C, Chen B Q, Li J B, Fang X, Zhang C L, Peng S B, et al. Novel method for the visual navigation path detection of the jujube harvester autopilot based on image processing. Int J Agric & Biol Eng, 2023; 16(5): 189-197.
Keywords
Full Text:
PDFReferences
Sharifi M, Chen X. A novel vision based row guidance approach for navigation of agricultural mobile robots in orchards. In: 2015 6th International Conference on Automation, Robotics and Applications (ICARA), 2015; pp.251-255.
Raikwar S, Fehrmann J, Herlitzius T. Navigation and control development for a four-wheel-steered mobile orchard robot using model-based design. Computers and Electronics in Agriculture, 2022; 202: 107410.
Zhou L, Li J B, Ding L P, Ding H Z, Shi G K, Li D L. Design and evaluation of a mechanical floor-standing jujube picker. Agriculture, 2022; 12(8): 1-20.
Jiang H B, Xiao Y L, Zhang Y W, Wang X J, Tai H J. Curve path detection of unstructured roads for the outdoor robot navigation. Mathematical and computer modelling, 2013; 58(3-4): 536-544.
Torres-Sospedra J, Nebot P. A new approach to visual-based sensory system for navigation into orange groves, Sensors. 2011; 11(4): 4086-4103.
English A, Ross P, Ball D, Corke P. Vision based guidance for robot navigation in agriculture. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, 2014; pp.1693-1698.
Shalal N, Low T, McCarthy C, Hancock N. A review of autonomous navigation systems in agricultural environments. SEAg 2013: Innovative Agricultural Technologies for a Sustainable Future, Engineers Australia, 2013.
Kim K, Deb A, Cappelleri D J. P-AgBot: In-row and under-canopy agricultural robot for monitoring and physical sampling. IEEE Robotics and Automation Letters, 2022; 7(3): 7942-7949.
Bakker T, van Asselt K, Bontsema J, Müller J, van Straten G. Autonomous navigation using a robot platform in a sugar beet field. Biosystems Engineering, 2011; 109(4): 357-368.
Pini M, Marucco G, Falco G, Nicola M, De Wilde W. Experimental testbed and methodology for the assessment of RTK GNSS receivers used in precision agriculture. IEEE Access, 2020; 8: 14690-14703.
Rovira-Más F, Chatterjee I, Sáiz-Rubio V. The role of GNSS in the navigation strategies of cost-effective agricultural robots. Computers and electronics in Agriculture, 2015; 112: 172-183.
Nehme H, Aubry C, Solatges T, Savatier X, Boutteau R, Rossi R. Lidar-based structure tracking for agricultural robots: Application to autonomous navigation in vineyards. Journal of Intelligent & Robotic Systems, 2021; 103: 1-16.
Higuti V A H, Velasquez A E B, Magalhaes D V, Becker M, Chowdhary G. Under canopy light detection and ranging‐based autonomous navigation. Journal of Field Robotics, 2019; 36(3): 547-567.
Raj T, Hanim H F, Huddin A B, Ibrahim M F, Hussain A. A survey on LiDAR scanning mechanisms. Electronics, 2020; 9(5): 741.
Wang T, Chen B, Zhang Z, Li H, Zhang M. Applications of machine vision in agricultural robot navigation: A review. Computers and Electronics in Agriculture, 2022; 198: 107085.
Bonin-Font F, Ortiz A, Oliver G. Visual navigation for mobile robots: A survey. Journal of Intelligent and Robotic Systems, 2008; 53: 263-296.
Zhou M K, Xia J F, Yang F, Zheng K, Hu M J, Li D, et al. Design and experiment of visual navigated UGV for orchard based on Hough matrix and RANSAC. Int J Agric & Biol Eng, 2021; 14(6): 176–184. doi: 10.25165/j.ijabe.20211406.5953
Lyu H K, Park C-H, Han D H, Kwak S, Choi B. Orchard free space and center line estimation using Naive Bayesian classifier for unmanned ground self-driving vehicle. Symmetry, 2018; 10(9): 355.
Choi K H, Han S K, Han S H, Park K-H, Kim K-S, Kim S. Morphology-based guidance line extraction for an autonomous weeding robot in paddy fields. Computers and Electronics in Agriculture, 2015; 113: 266-274.
Jiang G, Wang Z, Liu H. Automatic detection of crop rows based on multi-ROIs. Expert systems with applications, 2015; 42(5): 2429-2441.
Chen J, Qiang H, Wu J, Xu G, Liu X. Extracting the navigation path of a tomato-cucumber greenhouse robot based on a median point Hough transform. Computers and Electronics in Agriculture, 2020; 174: 105472.
Gao G, Li M. Navigating path recognition for greenhouse mobile robot based on K-means algorithm. Transactions of the CSAE, 2014; 30(7): 25-33. (in Chinese)
Peng S, Kan Z, Li J. Extraction of visual navigation directrix for harvesting operation in short-stalked and close-planting jujube orchard. Transactions of the CSAE, 2017; 33(9): 45-52. (in Chinese)
Adams R, Bischof L. Seeded region growing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994; 16(6): 641-647.
Zhou J, Geng S, Qiu Q, et al. A deep-learning extraction method for orchard visual navigation lines. Agriculture, 2022; 12(10): 1650.
Chen T. The past, present, and future of image and multidimensional signal processing. IEEE Signal Processing Magazine, 1998; 15(2): 21-58.
Bhattacharyya S. A brief survey of color image preprocessing and segmentation techniques. Journal of Pattern Recognition Research, 2011; 1(1): 120-129.
Vasuki P, Kanimozhi J, Devi M B. A survey on image preprocessing techniques for diverse fields of medical imagery. In: 2017 IEEE International Conference on Electrical, Instrumentation and Communication Engineering (ICEICE), IEEE, 2017; doi:10.1109/ICEICE.2017.8192443.
Wang D C C, Vagnucci A H, Li C C. Digital image enhancement: A survey. Computer Vision, Graphics, and Image Processing, 1983; 24(3): 363-381.
Ahirwal B, Khadtare M, Mehta R. FPGA based system for color space transformation RGB to YIQ and YCbCr. In: 2007 International Conference on Intelligent and Advanced Systems, IEEE, 2007; pp.1345-1349.
Liu Z, Chen W, Zou Y, Hu C. Regions of interest extraction based on HSV color space. In: IEEE 10th International Conference on Industrial Informatics, IEEE, 2012; pp.481-485. .doi:10.1109/indin.2012.6301214.
Asmare M H, Asirvadam V S, Iznita L. Color space selection for color image enhancement applications. In: 2009 International Conference on Signal Acquisition and Processing, IEEE, 2009; pp.208-212.
Jiang W J, Yang Z T, Wang P F, Cao Q X. Navigation path points extraction method based on color space and depth information for combine harvester. In: 2020 5th International Conference on Advanced Robotics and Mechatronics (ICARM), IEEE, 2020; pp.622-627. doi:10.1109/ICARM49381.2020.9195358.
Du Q, Wang D, Sha L. Recognition of mobile robot navigation path based on K-means algorithm. International Journal of Pattern Recognition and Artificial Intelligence, 2020; 34(8): 2059028.
Mao J, Cao Z, Wang H, Zhang B, Niu W. Agricultural robot navigation path recognition based on k-means algorithm for large-scale image segmentation. In: 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA), IEEE, 2019; pp.1233-1237. doi:10.1109/ICIEA.2019.8834296.
Jin Y, Wen S, Shi Z, et al. Target recognition and navigation path optimization based on NAO robot. Applied Sciences, 2022; 12(17): 8466.
Loresco P J M, Dadios E P, Valenzuela I C. Color space analysis using KNN for lettuce crop stages identification in smart farm setup. In: TENCON 2018: IEEE Region 10 Conference, IEEE, 2018; pp.2040-2044. doi:10.1109/TENCON.2018.8650209.
Larijani M R, Asli‐Ardeh E A, Kozegar E, Loni R. Evaluation of image processing technique in identifying rice blast disease in field conditions based on KNN algorithm improvement by K‐means. Food Science & Nutrition, 2019; 7(12): 3922-3930.
Hossain E, Hossain M F, Rahaman M A. A color and texture based approach for the detection and classification of plant leaf disease using KNN classifier. In: 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE), IEEE, 2019; doi:10.1109/ECACE.2019.8679247.
Weeks A R, Hague G E. Color segmentation in the HSI color space using the k-means algorithm. In: Nonlinear image processing VIII. SPIE, 1997; 3026: 143-154.
Senthilkumaran N, Vaithegi S. Image segmentation by using thresholding techniques for medical images. Computer Science & Engineering: An International Journal, 2016; 6(1): 1-13.
Woebbecke D M, Meyer G E, Von Bargen K, et al. Shape features for identifying young weeds using image analysis. Transactions of the ASAE, 1995; 38(1): 271-281.
Ribeiro A, Fernández-Quintanilla C, Barroso J, Garcíaalegre M C. Development of an image analysis system for estimation of weed pressure. Precision Agriculture, 2005; 5: 169-174.
Kataoka T, Kaneko T, Okamoto H, Hata S. Crop growth estimation system using machine vision. In: Proceedings 2003 IEEE/ASME international conference on advanced intelligent mechatronics (AIM 2003), IEEE, 2003; 2: b1079-b1083. doi:10.1109/AIM.2003.1225492.
Hague T, Tillett N D, Wheeler H. Automated crop and weed monitoring in widely spaced cereals. Precision Agriculture, 2006; 7: 21-32.
Meyer G E, Neto J C. Verification of color vegetation indices for automated crop imaging applications. Computers and electronics in agriculture, 2008; 63(2): 282-293.
Pratt W K. Digital image processing. Wiley-Interscience. 2007.
Jack K. Video demystified: a handbook for the digital engineer. Elsevier, 2011.
Otsu N. A threshold selection method from gray-level histograms. IEEE transactions on systems, man, and cybernetics, 1979; 9(1): 62-66.
Ramos A R, Gaspar P D. Algorithm for path recognition in-between tree rows for agricultural wheeled-mobile robots. International Journal of Mechanical and Mechatronics Engineering, 2019; 13(1): 34-37.
García-Santillán I, Guerrero J M, Montalvo M, Pajares G. Curved and straight crop row detection by accumulation of green pixels from images in maize fields. Precision Agriculture, 2018; 19: 18-41.
Zhang X Y, Li X N, Zhang B H, Zhou J, Tian G Z, Xiong Y J, et al. Automated robust crop-row detection in maize fields based on position clustering algorithm and shortest path method. Computers and Electronics in Agriculture, 2018; 154: 165-175.
Chen J Q, Qiang H, Wu J H, Xu G W. Navigation path extraction for greenhouse cucumber-picking robots using the prediction-point Hough transform. Computers and Electronics in Agriculture, 2021; 180: 105911.
Hough P V C. Method and means for recognizing complex patterns: U.S. Patent 3,069,654. 1962-12-18.
Winterhalter W, Fleckenstein F V, Dornhege C, Burgard W. Crop row detection on tiny plants with the pattern hough transform. IEEE Robotics and Automation Letters, 2018; 3(4): 3394-3401.
He B, Liu G, Ji Y, Si Y S, Gao R. Auto recognition of navigation path for harvest robot based on machine vision. In: Computer and Computing Technologies in Agriculture IV: 4th IFIP TC 12 Conference, CCTA 2010, Nanchang, China, October 22-25, 2010, Springer Berlin Heidelberg, 2011; 344: 138-148. doi:10.1007/978-3-642-18333-1_19.
Amin A, Fischer S. A document skew detection method using the Hough transform. Pattern Analysis & Applications, 2000; 3: 243-253.
Copyright (c) 2023 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.