Application of different molecular sieves in photothermal catalysis of Jatropha oil
Abstract
Keywords: Jatropha oil, applications of molecular sievers, photothermal catalysis, biofuel
DOI: 10.25165/j.ijabe.20231605.7635
Citation: Yang Y J, Ma L L, Sun L M, Zhang X H, Gui C, Chen Y B. Application of different molecular sieves in photothermal catalysis of Jatropha oil. Int J Agric & Biol Eng, 2023; 16(5): 204-212.
Keywords
Full Text:
PDFReferences
Alalwan H A, Alminshid A H, Aljaafari H A S. Promising evolution of biofuel generations. Subject review. Renew Energy Focus, 2019; 28: 127–139.
Blanco-Marigorta A M, Suárez-Medina J, Vera-Castellano A. Exergetic analysis of a biodiesel production process from Jatropha curcas. Applied Energy, 2013; 101: 218–225.
Xiao S, Fu Q, Li Z, Li J, Zhang L, Zhu X, et al. Solar-driven biological inorganic hybrid systems for the production of solar fuels and chemicals from carbon dioxide. Renewable and Sustainable Energy Reviews, 2021; 150: 111375. doi: 10.1016/j.rser.2021.111375.
Gabriel C B, Canhaci S J, Borges L E P, Fraga M A. Aviation biofuel range cycloalkane from renewables: Liquid-phase catalytic conversion of menthol on niobia-supported catalysts. Fuel, 2020; 277: 118288. doi: 10.1016/j.fuel.2020.118288.
Macintosh A, Wallace L. International aviation emissions to 2025: Can emissions be stabilised without restricting demand? Energy Policy, 2009; 37(1): 264–273.
Bulushev D A, Ross J R H. Catalysis for conversion of biomass to fuels via pyrolysis and gasification: A review. Catalysis Today, 2011; 171(1): 1–13.
Yilmaz N, Atmanli A. Sustainable alternative fuels in aviation. Energy, 2017; 140(Part2): 1378–1386.
Qi Y, Wang J Y, Kou Y, Pang H C, Zhang S H, Li N, et al. Synthesis of an aromatic N-heterocycle derived from biomass and its use as a polymer feedstock. Nature Communications, 2019; 10: 2107. doi: 10.1038/s41467-019-10178-0.
Chen R X, Wang W C. The production of renewable aviation fuel from waste cooking oil. Part I: Bio-alkane conversion through hydro-processing of oil. Renewable Energy, 2019; 135: 819–835.
Huang Z P, Zhao Z T, Zhang C F, Lu J M, Liu H F, Luo N C, et al. Enhanced photocatalytic alkane production from fatty acid decarboxylation via inhibition of radical oligomerization. Nature Catalysis, 2020; 3: 170–178.
Eller Z, Varga Z, Hancsók J. Advanced production process of jet fuel components from technical grade coconut oil with special hydrocracking. Fuel, 2016; 182: 713–720.
Duan J Z, Han J X, Sun H, Chen P, Lou H, Zheng X M. Diesel-like hydrocarbons obtained by direct hydrodeoxygenation of sunflower oil over Pd/Al-SBA-15 catalysts. Catalysis Communications, 2012; 17: 76–80.
Kim S K, Brand S, Lee H S, Kim Y, Kim J. Production of renewable diesel by hydrotreatment of soybean oil: Effect of reaction parameters. Chemical Engineering Journal, 2013; 228: 114–123.
Horáček J, Tišler Z, Rubáš V, Kubička D. HDO catalysts for triglycerides conversion into pyrolysis and isomerization feedstock. Fuel, 2014; 121: 57–64.
Vásquez M C, Silva E E, Castillo E F. Hydrotreatment of vegetable oils: A review of the technologies and its developments for jet biofuel production. Biomass and Bioenergy, 2017; 105: 197–206.
Verma D, Rana B S, Kumar R, Sibi M G, Sinha A K. Diesel and aviation kerosene with desired aromatics from hydroprocessing of Jatropha oil over hydrogenation catalysts supported on hierarchical mesoporous SAPO-11. Applied Catalysis A: General, 2015; 490: 108–116.
Qin J, Li B S, Yan D. Synthesis, characterization and catalytic performance of well-ordered crystalline heteroatom mesoporous MCM-41. Crystals, 2017; 7(4): 89. doi: 10.3390/cryst7040089.
Xing G H, Liu S Y, Guan Q X, Li W. Investigation on hydroisomerization and hydrocracking of C15-C18 n-alkanes utilizing a hollow tubular Ni-Mo/SAPO-11 catalyst with high selectivity of jet fuel. Catalysis Today, 2019; 330: 109–116.
Kraeutler B, Bard A J. Heterogeneous photocatalytic decomposition of saturated carboxylic acids on titanium dioxide powder. Decarboxylative route to alkanes. Journal of the American Chemical Society, 1978; 9(52): 5985–5992.
Tijmensen M J A, Faaij A P C, Hamelinck C N, Van Hardeveld M R M. Exploration of the possibilities for production of fischer tropsch liquids and power via biomass gasification. Biomass and Bioenergy, 2002; 23(2): 129–152.
Kubacka A, Fernández-García M, Colón G. Advanced nanoarchitectures for solar photocatalytic applications. Chemical Reviews, 2012; 112: 1555–1614.
Vibhu S, Manpreet K, Sanjeev B. Performance investigation of high velocity flame sprayed multi-dimensional Ni-TiO2 and Ni-TiO2-Al2O3 coated hydro turbine steel under slurry erosion. Wear, 2020; 462–463: 203498.
Nie R F, Lei H, Pan S Y, Wang L N, Fei J H, Hou Z Y. Core-shell structured CuO-ZnO@HZSM-5 catalysts for CO hydrogenation to dimethyl ether. Fuel, 2012; 96: 419–425.
Wang Y D, Tao Z C, Wu B S, Xu J, Huo C F, Li K, et al. Effect of metal precursors on the performance of Pt/ZSM-22 catalysts for n-hexadecane hydroisomerization. Journal of Catalysis, 2015; 322: 1–13.
Mizukoshi Y, Makise Y, Shuto T, Hu J, Tominaga A, Shironita S, et al. Immobilization of noble metal nanoparticles on the surface of TiO2 by the sonochemical method: Photocatalytic production of hydrogen from an aqueous solution of ethanol. Ultrasonics Sonochemistry, 2007; 14(3): 387–392.
Chiarello G L, Aguirre M H, Selli E. Hydrogen production by photocatalytic steam reforming of methanol on noble. Journal of Catalysis, 2010; 273(2): 182–190.
Chen Y B, Li X Y, Liu S J, Zhang W J, Wang Q, Zi W H. Effects of metal promoters on one-step Pt/SAPO-11 catalytic hydrotreatment of castor oil to C8-C16 alkanes. Industrial Crops and Products, 2020; 146: 112182. doi: 10.1016/j.indcrop.2020.112182.
Li X Y, Chen Y B, Hao Y J, Zhang X, Du J C, Zhang A M. Optimization of aviation kerosene from one-step hydrotreatment of catalytic Jatropha oil over SDBS-Pt/SAPO-11 by response surface methodology. Renewable Energy, 2019; 139: 551–559.
Gong S F, Shinozaki A, Shi M L, Qian E W. Hydrotreating of Jatropha oil over alumina based catalysts. Energy and Fuels, 2012; 26(4): 2394–2399.
Vichaphund S, Aht-ong D, Sricharoenchaikul V, Atong D. Effect of CV-ZSM-5, Ni-ZSM-5 and FA-ZSM-5 catalysts for selective aromatic formation from pyrolytic vapors of rubber wastes. Journal of Analystical and Applied Pyrolysis, 2017; 124: 733–741.
Kemdeo S M, Sapkal V S, Chaudhari G N. TiO2-SiO2 mixed oxide supported MoO3 catalyst: Physicochemical characterization and activities in nitration of phenol. Journal of Molecular Catalysis A: Chemical, 2010; 323(1-2): 70–77.
Liu R H, Sarker M, Rahman M M, Li C, Chai M Y, Cotillon N R, et al. Multi-scale complexities of solid acid catalysts in the catalytic fast pyrolysis of biomass for bio-oil production-a review. Progress in Energy and Combustion Science, 2020; 80: 100852. doi: 10.1016/j.pecs.2020.100852.
Shi Y C, Zhang J M, Xing E H, Xie Y B, Cao H B. Selective production of jet-fuel-range alkanes from palmitic acid over Ni/H-MCM-49 with two independent pore systems. Industrial & Engineering Chemistry Research, 2019; 58(47): 21341–21349.
Cao Y Y, Shi Y C, Bi Y F, Wu K J, Hu S J, Wu Y L, et al. Hydrodeoxygenation and hydroisomerization of palmitic acid over bi-functional Co/H-ZSM-22 catalysts. Fuel Process Technology, 2018; 172: 29–35.
Zhang J M, Shi Y C, Cao H B, Wu Y L, Yang M D. Conversion of palmitic acid to jet fuel components over Mo/H-ZSM-22 bi-functional catalysts with high carbon reservation. Applied Catalysis A: General, 2020; 608: 117847. doi: 10.1016/j.apcata.2020.117847.
Du X Z, Zhou K Y, Zhou L Y, Lei X, Yang H R, Li D, et al. Efficient catalytic conversion of Jatropha oil to high grade biofuel on Ni-Mo2C/MCM-41 catalysts with tuned surface properties. Journal of Energy Chemistry, 2021; 61: 425–435.
Hari T K, Yaakob Z. Production of diesel fuel by the hydrotreatment of Jatropha oil derived fatty acid methyl esters over γ-Al2O3 and SiO2 supported NiCo bimetallic catalysts. Reaction Kinetics Mechanisms and Catalysis, 2015; 116(1): 131–145.
Zhang W J, Chen Y B, Zhuang S Y, Li R F, Hu L D. Acid-etched Pt/Al-MCM-41 catalysts for fuel production by one-step hydrotreatment of Jatropha oil. GCB Bioenergy, 2021; 13(4): 679–690.
da Rocha Filho G N, Brodzki D, Djéga-Mariadassou G. Formation of alkanes, alkylcycloalkanes and alkylbenzenes during the catalytic hydrocracking of vegetable oils. Fuel, 1993; 72(4): 543–549.
Jeong H, Bathula H B, Kim T W, Han G B, Jang J H, Jeong B, et al. Superior long-term stability of a mesoporous alumina-supported Pt catalyst in the hydrodeoxygenation of palm oil. ACS Sustainable Chemistry & Engineering, 2021; 9(3): 1193–1202.
Lin C H, Wang W C. Direct conversion of glyceride-based oil into renewable jet fuels. Renewable and Sustainable Energy Reviews, 2020; 132: 110109. doi: 10.1016/j.rser.2020.110109.
Chen L G, Li H W, Fu J Y, Miao C L, Lyu P M, Yuan Z H. Catalytic hydroprocessing of fatty acid methyl esters to renewable alkane fuels over Ni/HZSM-5 catalyst. Catalysis Today, 2016; 259(Part 2): 266–276.
Zhang Z W, Wang Q F, Chen H, Zhang X W. Hydroconversion of waste cooking oil into green biofuel over hierarchical USY-Supported NiMo catalyst: A comparative study of desilication and dealumination. Catalysts, 2017; 7(10): 281. doi: 10.3390/catal710281.
Cheng J, Zhang Z, Zhang X, Liu J F, Zhou J H, Cen K F. Hydrodeoxygenation and hydrocracking of microalgae biodiesel to produce jet biofuel over H3PW12O40-Ni/hierarchical mesoporous zeolite Y catalyst. Fuel, 2019; 245: 384–391.
Feng F X, Niu X P, Wang L, Zhang X W, Wang Q F. TEOS-modified Ni/ZSM-5 nanosheet catalysts for hydroconversion of oleic acid to high-performance aviation fuel: Effect of acid spatial distribution. Microporous and Mesoporous Materials, 2020; 291: 109705. doi: 10.1016/j.micromeso.2019.109705.
Feng F X, Shang Z Y, Wang L, Zhang X W, Liang X H, Wang Q F. Structure-sensitive hydro-conversion of oleic acid to aviation-fuel-range-alkanes over alumina-supported nickel catalyst. Catalysis Communications, 2020; 134: 105842. doi: 10.1016/j.catcom.2019.105842.
Copyright (c) 2023 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.