Recent advances in flexible pressure/strain sensors using carbon nanotubes
Abstract
Keywords: carbon nanotube, flexible sensor, strain sensor, pressure sensor
DOI: 10.25165/j.ijabe.20221502.7364
Citation: Ma C, Zhou RY, Xie L J. Recent advances in flexible pressure/strain sensors using carbon nanotubes. Int J Agric & Biol Eng, 2022; 15(2): 1–12.
Keywords
Full Text:
PDFReferences
Li S, Ma Z, Cao Z L, Pan L J, Shi Y. Advanced wearable microfluidic sensors for healthcare monitoring. Small, 2020; 16(9): 1903822. doi: 10.1002/smll.201903822.
Ling Y Z, An T, Yap L W, Zhu W B, Gong S, Cheng W L. Disruptive, soft, wearable sensors. Advanced Materials, 2020; 32(18): 1904664. doi: 10.1002/adma.201904664.
Wang C Y, Xia K L, Wang H M, Liang X P, Yin Z, Zhang Y Y. Advanced carbon for flexible and wearable electronics. Advanced Materials, 2019; 31(9): 1801072. doi: 10.1002/adma.201801072.
Zheng Q B, Lee J-H, Chen X D, Kim J-K. Graphene-based wearable piezoresistive physical sensors. Materialstoday, 2020; 36: 158–179.
Jayathilaka W A D M, Qi K, Qin Y L, Chinnappan A, Serrano-Garcia W, Baskar C, et al. Significance of nanomaterials in wearables: A review on wearable actuators and sensors. Advanced Materials, 2019; 31(7): 1805921. doi: 10.1002/adma.201805921.
Wang H M, Li S, Wang Y L, Wang H M, Shen X Y, Zhang M C, et al. Bioinspired fluffy fabric with in situ grown carbon nanotubes for ultrasensitive wearable airflow sensor. Advanced Materials, 2020; 32(11): 1908214. doi: 10.1002/adma.201908214.
Wang A J, Maharjan S, Liao K S, McElhenny B P, Wright K D, Dillon E P, et al. Poly (octadecyl acrylate) - grafted multiwalled carbon nanotube composites for wearable temperature sensors. ACS Applied Nano Materials, 2020; 3(3): 2288–2301.
Zhou G H, Byun J-H, Oh Y, Jung B-M, Cha H-J, Seong D-G, et al. Highly sensitive wearable textile-based humidity sensor made of high-strength, single-walled carbon nanotube/Poly (vinyl alcohol) filaments. ACS Applied Materials & Interfaces, 2017; 9(5): 4788–4797.
Schoolaert E, Hoogenboom R, De Clerck K. Colorimetric nanofibers as optical sensors. Advanced Functional Materials, 2017; 27(38): 1702646. doi: 10.1002/adfm.201702646.
Li R F, Qi H, Ma Y, Deng Y P, Liu S N, Jie Y S, et al. A flexible and physically transient electrochemical sensor for real-time wireless nitric oxide monitoring. Nature Communications, 2020; 11(1): 3207. doi: 10.1038/s41467-020-17008-8.
Zhang M, Yeow J T W. Flexible polymer-carbon nanotube composite with high-response stability for wearable thermal imaging. ACS Applied Materials & Interfaces, 2018; 10(31): 26604–26609.
Huang J R, Yang X X, Liu J T, Her S-C, Guo J Q, Gu J F, et al. Vibration monitoring based on flexible multi-walled carbon nanotube/polydimethylsiloxane film sensor and the application on motion signal acquisition. Nanotechnology, 2020; 31(33): 335504. doi: 10.1088/1361-6528/ab8edd.
Li W, Xu F J, Liu W, Gao Y, Zhang K, Zhang X H, et al. Flexible strain sensor based on aerogel-spun carbon nanotube yarn with a core-sheath structure. Composites Part A: Applied Science and Manufacturing, 2018; 108: 107–113.
Nankali M, Nouri N M, Navidbakhsh M, Geran Malek N, Amindehghan M A, Montazeri Shahtoori A, et al. Highly stretchable and sensitive strain sensors based on carbon nanotube–elastomer nanocomposites: The effect of environmental factors on strain sensing performance. Journal of Materials Chemistry C, 2020; 8(18): 5154–5163.
Zuruzi A S, Haffiz T M, Affidah D, Amirul A, Norfatriah A, Nurmawati M H. Towards wearable pressure sensors using multiwall carbon nanotube/polydimethylsiloxane nanocomposite foams. Materials & Design, 2017; 132: 449–458.
Kim S J, Moon D I, Seol M L, Kim B, Han J W, Meyyappan M. Wearable UV sensor based on carbon nanotube-coated cotton thread. ACS Applied Materials & Interfaces, 2018; 10(46): 40198–40202.
Reale Batista M D, Kim S J, Drzal L T, Han J-W, Meyyappan M. Carbon nanotube-based flexible UV sensor on various substrates. IEEE Sensors Journal, 2020; 20(15): 8429–8436.
Jeon J-Y, Kang B-C, Ha T-J. Flexible pH sensors based on printed nanocomposites of single-wall carbon nanotubes and Nafion. Applied. Surface Science, 2020; 514: 145956. doi: 10.1016/j.apsusc.2020. 145956.
Parrilla M, Guinovart T, Ferre J, Blondeau P, Andrade F J. A wearable paper-based sweat sensor for human perspiration monitoring. Advanced Healthcare Materials, 2019; 8(16): 1900342. doi: 10.1002/adhm. 201900342.
Roy S, David-Pur M, Hanein Y. Carbon nanotube-based ion selective sensors for wearable applications. ACS Applied Materials & Interfaces, 2017; 9(40): 35169–35177.
Kang B-C, Park B-S, Ha T-J. Highly sensitive wearable glucose sensor systems based on functionalized single-wall carbon nanotubes with glucose oxidase-nafion composites. Applied Surface Science, 2019; 470: 13–18.
Valentine C J, Takagishi K, Umezu S, Daly R, De Volder M. Paper-based electrochemical sensors using paper as a scaffold to create porous carbon nanotube electrodes. ACS Applied Materials& Interfaces, 2020; 12(27): 30680–30685.
Luo X, Shi W, Yu H, Xie Z, Li K, Cui Y. Wearable carbon nanotube-based biosensors on gloves for lactate. Sensors, 2018; 18(10): 3398. doi: 10.3390/s18103398.
Maity D, Kumar R T R. Polyaniline anchored MWCNTs on fabric for high performance wearable ammonia sensor. ACS Sensors, 2018; 3(9): 1822–1830.
Maity D, Rajavel K, Kumar R T R. Polyvinyl alcohol wrapped multiwall carbon nanotube (MWCNTs) network on fabrics for wearable room temperature ethanol sensor. Sensors and Actuators B: Chemical, 2018; 261: 297–306.
Koo J H, Jeong S, Shim H J, Son D, Kim J, Kim D C, et al. Wearable electrocardiogram monitor using carbon nanotube electronics and color-tunable organic light-emitting diodes. ACS Nano, 2017; 11(10): 10032–10041.
Lee G, Wei Q, Zhu Y. Emerging wearable sensors for plant health monitoring. Advanced Functional Materials, 2021; 31(52): 2106475. doi: 10.1002/adfm.202106475.
Wang F, Liu S, Shu L, Tao X M. Low-dimensional carbon based sensors and sensing network for wearable health and environmental monitoring. Carbon, 2017, 121: 353–367.
Li Q, Li J, Tran D, Luo C Q, Gao Y, Yu C J, et al. Engineering of carbon nanotube/polydimethylsiloxane nanocomposites with enhanced sensitivity for wearable motion sensors. Journal of Materials Chemistry C, 2017; 5(42): 11092–11099.
Han S-T, Peng H Y, Sun Q J, Venkatesh S, Chung K-S, Lau S C, et al. An overview of the development of flexible sensors. Advanced Materials, 2017; 29(33): 1700375. doi: 10.1002/adma.201700375.
Gao J F, Wu L S, Guo Z, Li J Y, Xu C, Xue H G. A hierarchical carbon nanotube/SiO2 nanoparticle network induced superhydrophobic and conductive coating for wearable strain sensors with superior sensitivity and ultra-low detection limit. Journal of Materials Chemistry C, 2019; 7(14): 4199–4209.
Luo S D, Hoang P T, Liu T. Direct laser writing for creating porous graphitic structures and their use for flexible and highly sensitive sensor and sensor arrays. Carbon, 2016; 96: 522–531.
Qin Y Y, Peng Q Y, Ding Y J, Lin Z S, Wang C H, Li Y, et al. Lightweight, superelastic, and mechanically flexible graphene/polyimide nanocomposite foam for strain sensor application. ACS Nano, 2015; 9(9): 8933–8941.
Ho D H, Sun Q J, Kim S Y, Han J T, Kim D H, Cho J H. Stretchable and multimodal all graphene electronic skin. Advanced Materials, 2016; 28(13): 2601–2608.
Wu S, Zhang J, Ladani R B, Ravindran A R, Mouritz A P, Kinloch A J, et al. Novel electrically conductive porous PDMS/Carbon nanofiber composites for deformable strain sensors and conductors. ACS Applied Materials & Interfaces, 2017; 9(16): 14207–14215.
Song Y, Lee J I, Pyo S, Eun Y, Choi J, Kim J. A highly sensitive flexible strain sensor based on the contact resistance change of carbon nanotube bundles. Nanotechnology, 2016; 27(20): 205502. doi: 10.1088/0957-4484/27/20/205502.
Samad Y A, Li Y, Schiffer A, Alhassan S M, Liao K. Graphene foam developed with a novel two-step technique for low and high strains and pressure-sensing applications. Small, 2015; 11(20): 2380–2385.
Choi C, Lee J M, Kim S H, Kim S J, Di J, Baughman R H. Twistable and stretchable sandwich structured fiber for wearable sensors and supercapacitors. Nano Letters, 2016; 16(12): 7677–7684.
Yan T, Wang Z, Pan Z J. Flexible strain sensors fabricated using carbon-based nanomaterials: A review. Current Opinion in Solid State & Materials Science, 2018; 22(6): 213–228.
Jian M, Wang C, Wang Q, Wang H, Xia K, Yin Z, et al. Advanced carbon materials for flexible and wearable sensors. Science China Materials, 2017; 60(11): 1026–1062.
Lee J, Kim S, Lee J, Yang D, Park B C, Ryu S, et al. A stretchable strain sensor based on a metal nanoparticle thin film for human motion detection. Nanoscale, 2014; 6(20): 11932–11939.
Li C Y, Liao Y C. Adhesive stretchable printed conductive thin film patterns on PDMS surface with an atmospheric plasma treatment. ACS Applied Materials & Interfaces, 2016; 8(18): 11868–11874.
Segev-Bar M, Haick H. Flexible sensors based on nanoparticles. ACS Nano, 2013; 7(10): 8366–8378.
Amjadi M, Pichitpajongkit A, Lee S, Ryu S, Park I. Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. ACS Nano, 2014; 8(5): 5154–5163.
Gong S, Schwalb W, Wang Y W, Chen Y, Tang Y, Si J, et al. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nature Communications, 2014; 5: 3132. doi: 10.1038/ncomms4132.
Yang Y B, Yang X D, Tan Y N, Yuan Q. Recent progress in flexible and wearable bio-electronics based on nanomaterials. Nano Research, 2017; 10(5): 1560–1583.
Baughman R, Zakhidov A, de Heer W. Carbon nanotubes - the route toward applications. Science, 2002; 297(5582): 787–792.
Chen Z, Ming T, Goulamaly M M, Yao H M, Nezich D, Hempel M, et al. Enhancing the sensitivity of percolative graphene films for flexible and transparent pressure sensor arrays. Advanced Functional Materials, 2016; 26(28): 5061–5067.
Kenry, Yeo J C, Yu J H, Shang M L, Loh K P, Lim C T. Highly flexible graphene oxide nanosuspension liquid-based microfluidic tactile sensor. Small, 2016; 12(12): 1593–1604.
Lu N S, Lu C, Yang S X, Rogers J. Highly sensitive skin-mountable strain gauges based entirely on elastomers. Advanced Functional Materials, 2012; 22(19): 4044–4050.
Wu X D, Han Y Y, Zhang X X, Zhou Z H, Lu C H. Large-area compliant, low-cost, and versatile pressure-sensing platform based on microcrack-designed carbon black@polyurethane sponge for human-machine interfacing. Advanced Functional Materials, 2016; 26(34): 6246–6256.
Choong C-L, Shim M-B, Lee B-S, Jeon S, Ko D-S, Kang T-H, et al. Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array. Advanced Materials, 2014; 26(21): 3451–3458.
Dou J B, Tang L X, Mou L, Zhang R F, Jiang X Y. Stretchable conductive adhesives for connection of electronics in wearable devices based on metal-polymer conductors and carbon nanotubes. Composites Science and Technology, 2020; 197: 108237. doi: 10.1016/ j.compscitech.2020.108237.
Behabtu N, Green M J, Pasquali M. Carbon nanotube-based neat fibers. Nanotoday, 2008; 3: 24–34.
Du J, Pei S, Ma L, Cheng M H. 25th anniversary article: Carbon nanotube- and graphene-based transparent conductive films for optoelectronic devices. Advanced Materials, 2014; 26(13): 1958–1991.
Bryning M B, Milkie D E, Islam M F, Hough L A, Kikkawa J M, Yodh A G. Carbon nanotube aerogels. Advanced Materials, 2007; 19(5): 661–664.
Liu H, Qing H B, Li Z D, Han Y L, Lin M, Yang H, et al. Paper: A promising material for human-friendly functional wearable electronics. Matererials Science Engineering: R: Reports, 2017; 112: 1–22.
DeGraff J, Liang R, Le M Q, Capsal J-F, Ganet F, Cottinet P-J. Printable low-cost and flexible carbon nanotube buckypaper motion sensors. Materials & Design, 2017; 133: 47–53.
Wajahat M, Lee S, Kim J H, Chang W S, Pyo J, Cho S H, et al. Flexible strain sensors fabricated by meniscus-guided printing of carbon nanotube-polymer composites. ACS Applied Materials & Interfaces, 2018; 10(23): 19999–20005.
Lam C X F, Mo X M, Teoh S H, Hutmacher D W. Scaffold development using 3D printing with a starch-based polymer. Materials Science and Engineering: C, 2002; 20(1-2): 49–56.
Herzer N, Hoeppener S, Schubert U S. Fabrication of patterned silane based self-assembled monolayers by photolithography and surface reactions on silicon-oxide substrates. Chemical Communications, 2010; 46(31): 5634–5652.
de Gans B J, Duineveld P C, Schubert U S. Inkjet printing of polymers: State of the art and future developments. Advanced Materials, 2004; 16(3): 203–213.
Zang Y P, Zhang F J, Di C-A, Zhu D B. Advances of flexible pressure sensors toward artificial intelligence and health care applications. Materials Horizons, 2015; 2(2): 140–156.
Pan L J, Chortos A, Yu G H, Wang Y Q, Isaacson S, Allen R, et al. An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film. Nature Communications, 2014; 5: 3002. doi: 10.1038/ncomms4002.
Trung T Q, Lee N E. Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoringand personal healthcare. Advanced Materials, 2016; 28(22): 4338–4372.
Ha M, Lim S, Park J, Um D-S, Lee Y, Ko H. Bioinspired interlocked and hierarchical design of ZnO nanowire arrays for static and dynamic pressure-sensitive electronic skins. Advanced Functional Materials, 2015; 25(19): 2841–2849.
Tien N T, Jeon S, Kim D I, Trung T Q, Jang M, Hwang B U, et al. A flexible bimodal sensor array for simultaneous sensing of pressure and temperature. Advanced Materials, 2014; 26(5): 796–804.
Cao Y, Li T, Gu Y, Luo H, Wang S, Zhang T. Fingerprint-inspired flexible tactile sensor for accurately discerning surface texture. Small, 2018; 14(16): 1703902. doi: 10.1002/smll.201703902.
Chang H, Kim S, Kang T H, Lee S W, Yang G T, Lee K Y, et al. Wearable piezoresistive sensors with ultrawide pressure range and circuit compatibility based on conductive-island-bridging nanonetworks. ACS Applied Materials & Interfaces, 2019; 11(35): 32291–32300.
Chen M M, Hu X Y, Li K, Sun J K, Liu Z J, An B G, et al. Self-assembly of dendritic-lamellar MXene/Carbon nanotube conductive films for wearable tactile sensors and artificial skin. Carbon, 2020; 164: 111–120.
Zhang W, Xiao Y, Duan Y, Li N, Wu L, Lou Y, et al. A high-performance flexible pressure sensor realized by overhanging cobweb-like structure on a micropost array. ACS Applied Materials & Interfaces, 2020; 12(43): 48938–48947.
Kim K H, Hong S K, Jang N S, Ha S H, Lee H W, Kim J M. Wearable resistive pressure sensor based on highly flexible carbon composite conductors with irregular surface morphology. ACS Applied Materials & Interfaces, 2017; 9(20): 17499–17507.
Chen X, Liu H, Zheng Y, Zhai Y, Liu X, Liu C, et al. Highly compressible and robust polyimide/carbon nanotube composite aerogel for high-performance wearable pressure sensor. ACS Applied Materials & Interfaces, 2019; 11(45): 42594–42606.
Sencadas V, Tawk C, Alici G. Environmentally friendly and biodegradable ultrasensitive piezoresistive sensors for wearable electronics applications. ACS Applied Materials & Interfaces, 2020; 12(7): 8761–8772.
Liu S Y, Lu J G, Shieh H P D. Influence of permittivity on the sensitivity of porous elastomer-based capacitive pressure sensors. IEEE Sensors Journal, 2018; 18(5): 1870–1876.
Choi J, Kwon D, Kim K, Park J, Orbe D D, Gu J, et al. Synergetic effect of porous elastomer and percolation of carbon nanotube filler toward high performance capacitive pressure sensors. ACS Applied Materials & Interfaces, 2020; 12(1): 1698–1706.
Kim S, Amjadi M, Lee T I, Jeong Y, Kwon D, Kim M S, et al. Wearable, ultrawide-range, and bending-insensitive pressure sensor based on carbon nanotube network-coated porous elastomer sponges for human interface and healthcare devices. ACS Applied Materials & Interfaces, 2019; 11(26): 23639–23648.
Zhan Z, Lin R, Tran V T, An J, Wei Y, Du H, et al. Paper/carbon nanotube-based wearable pressure sensor for physiological signal acquisition and soft robotic skin. ACS Applied Materials & Interfaces, 2017; 9(43): 37921–37928.
Dai H, Thostenson E T. Large-area carbon nanotube-based flexible composites for ultra-wide range pressure sensing and spatial pressure mapping. ACS Applied Materials & Interfaces, 2019; 11(51): 48370–48380.
Wang X, Yue O, Liu X, Hou M, Zheng M. A novel bio-inspired multi-functional collagen aggregate based flexible sensor with multi-layer and internal 3D network structure. Chemical Engineering Journal, 2020; 392: 123672. doi: 10.1016/j.cej.2019.123672.
Xu H, Xie Y, Zhu E, Liu Y, Shi Z, Xiong C, et al. Supertough and ultrasensitive flexible electronic skin based on nanocellulose/sulfonated carbon nanotube hydrogel films. Journal of Materials Chemistry A, 2020; 8(13): 6311–6318.
Zhang Y, Zhao Y, Zhai W, Zheng G, Ji Y, Dai K, et al. Multifunctional interlocked e-skin based on elastic micropattern array facilely prepared by hot-air-gun. Chemical Engineering Journal, 2021; 407(1): 127960. doi: 10.1016/j.cej.2020.127960.
Wang Y, Zhu M, Wei X, Yu J, Li Z, Ding B. A dual-mode electronic skin textile for pressure and temperature sensing. Chemical Engineering Journal, 2021; 425: 130599. doi: 10.1016/j.cej.2021.130599.
Lan L, Jiang C, Yao Y, Ping J, Ying Y. A stretchable and conductive fiber for multifunctional sensing and energy harvesting. Nano Energy, 2021; 84: 105954. doi: 10.1016/j.nanoen.2021.105954.
Iglio R, Mariani S, Robbiano V, Strambini L, Barillaro G. Flexible polydimethylsiloxane foams decorated with multiwalled carbon nanotubes enable unprecedented detection of ultralow strain and pressure coupled with a large working range. ACS Applied Materials & Interfaces, 2018; 10(16): 13877–13885.
Yao S, Zhu Y. Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires. Nanoscale, 2014; 6(4): 2345–2352.
Chen S, Lou Z, Chen D, Chen Z J, Jiang K, Shen G Z. Highly flexible strain sensor based on ZnO nanowires and P(VDF-TrFE) fibers for wearable electronic device. Science China Materials, 2016; 59(3): 173–181.
Amjadi M, Kyung K-U, Park I, Sitti M. Stretchable, skin-mountable, and wearable strain sensors and their potential applications: A review. Advanced Functional Materials, 2016; 26(11): 1678–1698.
He Z, Zhou G, Byun J H, Lee S K, Um M K, Park B, et al. Highly stretchable multi-walled carbon nanotube/thermoplastic polyurethane composite fibers for ultrasensitive, wearable strain sensors. Nanoscale, 2019; 11(13): 5884–5890.
Tang Z, Jia S, Wang F, Bian C, Chen Y, Wang Y, et al. Highly stretchable core-sheath fibers via wet-spinning for wearable strain sensors. ACS Applied Materials & Interfaces, 2018; 10(7): 6624–6635.
Zhou J, Xu X, Xin Y, Lubineau G. Coaxial thermoplastic elastomer-wrapped carbon nanotube fibers for deformable and wearable strain sensors. Advanced Functional Materials, 2018; 28(16): 1705591. doi: 10.1002/adfm.201705591.
Cai G, Hao B, Luo L, Deng Z, Zhang R, Ran J, et al. Highly stretchable sheath-core yarns for multifunctional wearable electronics. ACS Applied Materials & Interfaces, 2020; 12(26): 29717–29727.
Gao Y, Guo F, Cao P, Liu J, Li D, Wu J, et al. Winding-locked carbon nanotubes/polymer nanofibers helical yarn for ultrastretchable conductor and strain sensor. ACS Nano, 2020; 14(3): 3442–3450.
Wang Y, Hao J, Huang Z, Zheng G, Dai K, Liu C, et al. Flexible electrically resistive-type strain sensors based on reduced graphene oxide-decorated electrospun polymer fibrous mats for human motion monitoring. Carbon, 2018; 126: 360–371.
Wang L, Chen Y, Lin L, Wang H, Huang X, Xue H, et al. Highly stretchable, anti-corrosive and wearable strain sensors based on the PDMS/CNTs decorated elastomer nanofiber composite. Chemical Engineering Journal, 2019; 362: 89–98.
Sun D M, Liu C, Ren W C, Cheng H M. A review of carbon nanotube- and graphene-based flexible thin-film transistors. Small, 2013; 9(8): 1188–1205.
Yu Y, Luo Y, Guo A, Yan L, Wu Y, Jiang K, et al. Flexible and transparent strain sensors based on super-aligned carbon nanotube films. Nanoscale, 2017; 9(20): 6716–6723.
Shi J, Li X, Cheng H, Liu Z, Zhao L, Yang T, et al. Graphene reinforced carbon nanotube networks for wearable strain sensors. Advanced Functional Materials, 2016; 26(13): 2078–2084.
Nie B, Li X, Shao J, Li X, Tian H, Wang D, et al. Flexible and transparent strain sensors with embedded multiwalled carbon nanotubes meshes. ACS Applied Materials & Interfaces, 2017; 9(46): 40681–40689.
Wang X, Li J, Song H, Huang H, Gou J. Highly stretchable and wearable strain sensor based on printable carbon nanotube layers/polydimethylsiloxane composites with adjustable sensitivity. ACS Applied Materials & Interfaces, 2018; 10(8): 7371–7380.
Li L, Bai Y, Li L, Wang S, Zhang T. A superhydrophobic smart coating for flexible and wearable sensing electronics. Advanced Materials, 2017; 29(43): 1702517. doi: 10.1002/adma.201702517.
Ahuja P, Akiyama S, Ujjain S K, Kukobat R, Vallejos-Burgos F, Futamura R, et al. A water-resilient carbon nanotube based strain sensor for monitoring structural integrity. Journal of Materials Chemistry A, 2019; 7(34): 19996–20005.
Li Z, Shan Y, Wang X, Li H, Yang K, Cui Y. Self-healing flexible sensor based on metal-ligand coordination. Chemical Engineering Journal, 2020; 394: 124932. doi: 10.1016/j.cej.2020.124932.
Ding Y R, Xue C H, Fan Q Q, Zhao L L, Tian Q Q, Guo X J, et al. Fabrication of superhydrophobic conductive film at air/water interface for flexible and wearable sensors. Chemical Engineering Journal, 2021; 404: 126489. doi: 10.1016/j.cej.2020.126489.
Ding Y R, Xue C H, Guo X J, Wang X, Jia S T, An Q F. Fabrication of TPE/CNTs film at air/water interface for flexible and superhydrophobic wearable sensors. Chemical Engineering Journal, 2021; 409: 128199. doi: 10.1016/j.cej.2020.128199.
Lin L, Choi Y, Chen T, Kim H, Lee K S, Kang J, et al. Superhydrophobic and wearable TPU based nanofiber strain sensor with outstanding sensitivity for high-quality body motion monitoring. Chemical Engineering Journal, 2021; 419: 129513. doi: 10.1016/ j.cej.2021.129513.
Qaiser N, Al-Modaf F, Khan S M, Shaikh S F, El-Atab N, Hussain M M. A robust wearable point-of-care CNT-based strain sensor for wirelessly monitoring throat-related illnesses. Advanced Functional Materials, 2021; 31(29): 2103375. doi: 10.1002/adfm.202103375.
Wang S, Fang Y, He H, Zhang L, Li C A, Ouyang J. Wearable stretchable dry and self-adhesive strain sensors with conformal contact to skin for high-quality motion monitoring. Advanced Functional. Materials, 2020; 31(5): 2007495. doi: 10.1002/adfm.202007495.
Li C, Yang S, Guo Y, Huang H, Chen H, Zuo X, et al. Flexible, multi-functional sensor based on all-carbon sensing medium with low coupling for ultrahigh-performance strain, temperature and humidity sensing. Chemical Engineering Journal, 2021; 426: 130364. doi: 10.1016/j.cej.2021.130364.
Tang W, Yan T, Ping J, Wu J, Ying Y. Rapid fabrication of flexible and stretchable strain sensor by chitosan-based water ink for plants growth monitoring. Advanced Materials Technologies, 2017; 2(7): 1700021. doi: 10.1002/admt.201700021.
Nassar J M, Khan S M, Villalva D R, Nour M M, Almuslem A S, Hussain M M. Compliant plant wearables for localized microclimate and plant growth monitoring. npj Flexible Electronics, 2018; 2(1): 24. doi: 10.1038/s41528-018-0039-8.
Kim D, Ahn S K, Yoon J. Highly stretchable strain sensors comprising double network hydrogels fabricated by microfluidic devices. Advanced Materials Technologies, 2019; 4(7): 1800739. doi: 10.1002/ admt.201800739.
Jiang J, Zhang S, Wang B, Ding H, Wu Z. Hydroprinted liquid-alloy-based morphing electronics for fast-growing/tender plants: From physiology monitoring to habit manipulation. Small, 2020; 16(39): 2003833. doi: 10.1002/smll.202003833.
Tang W, Yan T, Wang F, Yang J, Wu J, Wang J, et al. Rapid fabrication of wearable carbon nanotube/graphite strain sensor for real-time monitoring of plant growth. Carbon, 2019; 147: 295–302.
Gu J, Kwon D, Ahn J, Park I. Wearable strain sensors using light transmittance change of carbon nanotube-embedded elastomers with microcracks. ACS Applied Materials & Interfaces, 2020; 12(9): 10908–10917.
Du R, Zhao Q, Zhang N, Zhang J. Macroscopic carbon nanotube-based 3D monoliths. Small, 2015; 11(27): 3263–3289.
Zhang S, Wen L, Wang H, Zhu K, Zhang M. Vertical CNT–ecoflex nanofins for highly linear broad-range-detection wearable strain sensors. Journal of Materials Chemistry C, 2018; 6(19): 5132–5139.
Wang H, Zhou R, Li D, Zhang L, Ren G, Wang L, et al. High-performance foam-shaped strain sensor based on carbon nanotubes and Ti3C2Tx MXene for the monitoring of human activities. ACS Nano, 2021; 15(6): 9690–9700.
Lee J, Pyo S, Kwon D S, Jo E, Kim W, Kim J. Ultrasensitive strain sensor based on separation of overlapped carbon nanotubes. Small, 2019; 15(12): 1805120. doi: 10.1002/smll.201805120.
Tas M O, Baker M A, Masteghin M G, Bentz J, Boxshall K, Stolojan V. Highly stretchable, directionally oriented carbon nanotube/PDMS conductive films with enhanced sensitivity as wearable strain sensors. ACS Applied Materials & Interfaces, 2019; 11(43): 39560–39573.
Qin Z, Sun X, Yu Q, Zhang H, Wu X, Yao M, et al. Carbon nanotubes/hydrophobically associated hydrogels as ultrastretchable, highly sensitive, stable strain, and pressure sensors. ACS Applied Materials & Interfaces, 2020; 12(4): 4944–4953.
Copyright (c) 2022 International Journal of Agricultural and Biological Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.